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An analytical study of delamination fracture in a two-dimensional functionally graded
multilayered beam exhibiting material non-linearity is carried-out. The beam is made of ad-
hesively bonded horizontal layers. The material is two-dimensional functionally graded in the
cross-section of each layer. A delamination crack is located symmetrically with respect to
the beam mid-span. The delamination is studied in terms of the strain energy release rate.
The solution derived is compared with the J-integral for verification. The effects of material
gradients, the crack location along the beam height and the material non-linearity on the de-
lamination fracture are investigated. The distribution of the J-integral value along the crack
front is analysed too.
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1. Introduction

Functionally graded materials are inhomogeneous composites made by mix-
ing of two different constituent materials. A desired continuous variation of
microstructure and mechanical properties in one or more directions is generated
during manufacturing of functionally graded materials, so as to provide bene-
fits of both of constituent materials [1]. The composition of functionally graded
materials can be tailored in order to obtain a predetermined composition pro-
file. Therefore, these novel materials are applied mainly in the development of
structural members and components subjected to non-uniform service require-
ments. Fracture mechanics plays a basic role in assessing of integrity and safety
of structural members and components made of functionally graded materials.
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Therefore, fracture behaviour of these materials continues to attract the atten-
tion of researchers [2–5].

Works dealing with fracture behaviour of functionally graded materials have
been reviewed in [2]. Various analyses of cracks oriented both parallel and per-
pendicular to the material gradient direction have been summarized. In these
analyses, methods of linear-elastic fracture mechanics have been applied. Frac-
ture studies under static or fatigue crack loading conditions have been consid-
ered. Various solutions for rectilinear cracks, circular arc cracks and slightly
curved cracks have been presented.

Cracks in functionally graded beams under three-point bending have been
analysed assuming linear-elastic behaviour of the material in [3]. The compliance
approach for evaluation of fracture has been explored. An equivalent homoge-
neous beam of variable height has been suggested. It has been found that the
compliance of the cracked functionally graded beam is well approximated by an
equivalent homogeneous beam with cubic variation of height. It has been shown
that the equivalent compliance concept is particularly suitable to gain insight
regarding the mechanics of cracks in functionally graded structural components
loaded by concentrated forces.

Free vibration problems of cracked functionally graded beams have been
analysed in [4]. It has been assumed that the modulus of elasticity varies along
the beam height (i.e., the material is one dimensional functionally graded). Both
clamped-clamped and clamped-free beam configurations have been investigated.
The fracture analysis has been performed assuming that the beam, which has
a transversal crack, can be modelled as two sub-beams connected by a rotational
spring of zero mass. The effects of crack location and crack depth on the dynamic
fracture behaviour have been discussed.

Longitudinal fracture in a functionally graded cantilever beam configura-
tion has been analysed with taking into account the non-linear behaviour of
the material in [5]. It has been assumed that the material is one dimensional
functionally graded. A vertical crack located arbitrary along the width of the
beam cross-section has been investigated.

Multilayered systems, manufactured by bonding of layers of different mate-
rials, are characterized by high strength to weight and stiffness to weight ratios.
Therefore, these systems are very suitable for structural applications, where low
weight is an important issue. Delamination, i.e. fracture along interfaces between
layers, is a type of failure often seen in multilayered structures. Therefore, sig-
nificant efforts have been devoted to investigate the delamination phenomenon
in multilayered materials [6–8].

Delamination fracture in multilayered functionally graded non-linear elastic
beams has been studied in [6]. It has been assumed that the material is one
dimensional functionally graded in each layer. A solution to the strain energy
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release rate has been derived. A parametric analysis of the delamination fracture
behaviour has been carried-out.

The present paper reports a theoretical study of delamination fracture in
a two-dimensional functionally graded multilayered beam that exhibits non-
linear behaviour of material. The beam is made of an arbitrary number of layers.
Each layer has individual thickness and material properties. Besides, the ma-
terial is two-dimensional functionally graded in the cross-section of each layer.
Fracture is studied in terms of the strain energy release rate. The solution derived
is verified by analysing the fracture behaviour with the help of the J-integral.
Effects of material gradients, crack location and material non-linearity on the de-
lamination fracture behaviour are evaluated. The distribution of the J-integral
value along the delamination crack front is investigated.

2. Determination of the strain energy release rate

Delamination fracture in the two-dimensional functionally graded multilay-
ered beam configuration shown in Fig. 1 is analysed in the present paper with

Fig. 1. The geometry and loading of a two-dimensional functionally graded multilayered beam.
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taking into account the non-linear behaviour of the material. The beam is made
of an arbitrary number of horizontal layers. Perfect adhesion is assumed between
layers. A vertical notch of depth, h2, is introduced in the beam mid-span in order
to generate conditions for delamination fracture. A delamination crack of length,
2a, is located symmetrically with respect to the beam mid-span. The thicknesses
of the lower and upper crack arms are h1 and h2, respectively. The beam cross-
section is a rectangle of width, b, and height, 2h. The beam is loaded by two
bending moments of magnitude, M , applied in the free ends of the beam as
shown in Fig. 1. It is obvious that the upper crack arms are free of stresses.

Due to the symmetry, only half of the beam, l ≤ x3 ≤ 2l, is analysed. The
strain energy release rate, G, in non-linear elastic beams can be written as [5]

(2.1) G =
dU∗

bda
,

where dU∗ is the change of the complementary strain energy, da is an elementary
increase of the crack length.

The present analysis is valid for non-linear elastic behaviour of material. The
analysis can also be used for elastic-plastic behaviour of material if the beam
undergoes active deformation, i.e. if the external loading increases only [9]. It
should also be noted that the present analysis is based on the small strains
assumption.

In order to determine G by formula (2.1), the complementary strain energy,
U∗, has to be expressed as a function of the delamination crack length, a. For
this purpose, the complementary strain energy density is integrated in the lower
crack arm, l ≤ x3 ≤ l + a, and the un-cracked beam portion, l + a ≤ x3 ≤ 2l:

(2.2) U∗ = a

i=nL∑
i=1

z1i+1ˆ

z1i

 b/2ˆ

−(b/2)

u∗0Li dy1

dz1

+ (l − a)
i=n∑
1=i

z2i+1ˆ

z2i

 b/2ˆ

−(b/2)

u∗0Ui dy2

dz2,

where u∗0Li and u∗0Ui are the complementary strain energy densities in the i-th
layer of the lower crack arm and un-cracked beam portion, respectively. Axes,
y1 and z1, and coordinates, z1i and z1i+1, are shown in Fig. 2, y2 and z2 are the
centroidal axes of the cross-section of un-cracked beam portion (z2 is directed
downwards). In Eq. (2.2), nL and n are the numbers of layers in the lower crack
arm and the un-cracked beam portion, respectively.
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Fig. 2. The geometry and loading of the lower crack arm cross-section in the beam mid-span
(the neutral axis position is marked by n1−n1).

The material behaviour in the i-th layer of the beam is described by the
following power-law stress-strain relation [10]:

(2.3) σi = Siε
mi ,

where Si and mi are material properties in the same layer. The material is two-
dimensional functionally graded in the cross-section of each layer. Thus, the
material property, Si, varies continuously in the cross-section of the i-th layer
according to the following law:

(2.4) Si = SHi
64y61
b6

+
SBi − SLi

(z1i+1 − z1i)3
(z1 − z1i)3 + SLi ,

where

(2.5) − b
2
≤ y1 ≤

b

2
, z1i ≤ z1 ≤ z1i+1.

In Eq. (2.4), SHi is a material property that governs the material gradient
along the width of the layer, SBi and SLi are the values of Si in points Bi and
Li, respectively (Fig. 2).

Formula (2.4) shows that the material property, Si, is distributed symmet-
rically with respect to vertical axis, z1.

In principle, the complementary strain energy density is equal to the area
OQR that supplements the area OPQ, enclosed by the stress-strain curve, to



66 V.I. RIZOV

a rectangle (Fig. 3). The complementary strain energy density in the i-th layer
of lower crack arm, when the material behaviour is described by the power-law
stress-strain relation, can be expressed as [6]

(2.6) u∗0Li = Si
miε

mi+1

mi + 1
.

Fig. 3. Non-linear stress-strain curve (u0 and u∗
0 are the strain energy and the complementary

strain energy densities, respectively).

The strain energy density is equal to the area OPQ, enclosed by the stress-
strain curve (Fig. 3). The strain energy density in the i-th layer of lower crack
arm can be written as [6]

(2.7) u0Li =
Siε

mi+1

mi + 1
.

The Bernoulli’s hypothesis for plane sections is used to analyse the distribu-
tion of strains since the span to height ratio of the beam under consideration is
large. Concerning application of the Bernoulli’s hypothesis in the present analy-
sis, it should also be noted that since the beam is loaded in pure bending (Fig. 1)
the only non-zero strain is the longitudinal strain, ε. Therefore, according to the
small strain compatibility equations, ε is distributed linearly along the height
of the beam cross-section. Thus, ε in the lower crack arm (Fig. 2) is written as

(2.8) ε = (z1 − z1n1)κ1,

where z1n1 is the coordinate of the neutral axis, κ1 is the curvature of the lower
crack arm. It should be noted that the neutral axis, n1−n1, shifts from the
centroid since the beam is multilayered and functionally graded (Fig. 2).

By substituting of (2.4) and (2.8) in (2.6), one obtains

(2.9) u∗0Li =

[
SHi

64y61
b6

+
SBi − SLi

(z1i+1 − z1i)3
(z1 − z1i)3 + SLi

]

· mi (z1 − z1n1)
mi+1 κmi+1

1

mi + 1
.
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Formula (2.9) describes the distribution of the complementary strain energy
density in the cross-section of the i-th layer of the lower crack arm.

The quantities, z1n1 and κ1, which participate in (2.9) are determined from
the following equilibrium equations of lower crack arm cross-section:

N1 =

i=nL∑
i=1

z1i+1ˆ

z1i

 b/2ˆ

−(b/2)

σ dy1

dz1,(2.10)

My1 =

i=nL∑
i=1

z1i+1ˆ

z1i

 b/2ˆ

−(b/2)

σz1 dy1

dz1,(2.11)

where N1 and My1 are the axial force and bending moment, respectively. It can
be observed in Fig. 2 that

(2.12) N1 = 0, My1 =M.

By substituting of (2.3), (2.4) and (2.8) in (2.10) and (2.11), the equilibrium
equations take the form

(2.13) N1 =

i=nL∑
i=1

{[
SLibκ

mi
1

mi + 1
+

SHibκ
mi
1

7 (mi + 1)
+
λibκ

mi
1 (−z1i)3

mi + 1

](
ρmi+1
i − υmi+1

i

)

+ 3λibκ
mi
1 z21i

[
1

mi + 2

(
ρmi+2
i − υmi+2

i

)
+

z1n1

mi + 1

(
ρmi+1
i − υmi+1

i

)]

− 3λibκ
mi
1 z1iqi

[
1

fi + 3qi

(
ρ
fi+3qi
qi

i − υ
fi+3qi
qi

i

)
+

2z1n1

fi + 2qi

(
ρ
fi+2qi
qi

i − υ
fi+2qi
qi

i

)

+
z21n1

fi + qi

(
ρ
fi+qi
qi

i − υ
fi+qi
qi

i

)]

+ λibκ
mi
1 qi

[
1

fi + 4qi

(
ρ
fi+4qi
qi

i − υ
fi+4qi
qi

i

)
+

3z1n1

fi + 3qi

(
ρ
fi+3qi
qi

i − υ
fi+3qi
qi

i

)

+
3z21n1

fi + 2qi

(
ρ
fi+2qi
qi

i − υ
fi+2qi
qi

i

)
+

z31n1

fi + qi

(
ρ
fi+qi
qi

i − υ
fi+qi
qi

i

)]}
,
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(2.14) My1 =

i=nL∑
i=1

{[
SLiκ

mi
1 b+

SHiκ
mi
1 b

7
+ λiκ

mi
1 b (−z1i)3

]

×
[

1

mi + 2

(
ρmi+2
i − υmi+2

i

)
+

z1n1

mi + 1

(
ρmi+1
i − υmi+1

i

)]

+ 3λiκ
mi
1 bz21iqi

[
1

fi + 3qi

(
ρ
fi+3qi
qi

i − υ
fi+3qi
qi

i

)
+

2z1n1

fi + 2qi

(
ρ
fi+2qi
qi

i − υ
fi+2qi
qi

i

)

+
z21n1

fi + qi

(
ρ
fi+qi
qi

i − υ
fi+qi
qi

i

)]

− 3λiκ
mi
1 bz1iqi

[
1

fi + 4qi

(
ρ
fi+4qi
qi

i − υ
fi+4qi
qi

i

)
+

3z1n1

fi + 3qi

(
ρ
fi+3qi
qi

i − υ
fi+3qi
qi

i

)

+
3z21n1

fi + 2qi

(
ρ
fi+2qi
qi

i − υ
fi+2qi
qi

i

)
+

z31n1

fi + qi

(
ρ
fi+qi
qi

i − υ
fi+qi
qi

i

)]

+ λiκ
mi
1 bqi

ρfi+5qi
i − υfi+5qi

i

fi + 5qi
+

4z1n1

(
ρfi+4qi
i − υfi+4qi

i

)
fi + 4qi

+
6z21n1

(
ρfi+3qi
i − υfi+3qi

i

)
fi + 3qi

+
4z31n1

(
ρfi+2qi
i − υfi+2qi

i

)
fi + 2qi

+
z41n1

(
ρfi+qii − υfi+qii

)
fi + qi

,
where λi = (SBi − SLi) / (z1i+1 − z1i)3, ρi = z1i+1 − z1n1 , υi = z1i − z1n1 and
fi/qi = mi (fi and qi are positive integers).

Obviously, at mi = 1 the power-law stress-strain relation (2.3) transforms
into the Hooke’s law. This means that at mi = 1 formula (2.14) should yield
the curvature of linear-elastic beam. Indeed, by substituting of mi = 1, nL = 1,
SLi = SBi = E (here E is the modulus of elasticity) and SHi = 0 in (2.14), one
derives

(2.15) κz1 =
12M

Ebh31
,
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which is exact match of the expression for curvature of a linear-elastic homoge-
neous beam of width, b, and height, h1.

Equations (2.13) and (2.14) should be solved with respect to z1n1 and κ1 by
using the MatLab computer program.

Formula (2.9) can also be applied to determine the distribution of the com-
plementary strain energy density, u∗0Ui , in the cross-section of the i-th layer of
the un-cracked beam portion. For this purpose, y1, z1, z1i, z1i+1, z1n1 and κ1
have to be replaced with y2, z2, z2i, z2i+1, z2n2 and κ2, respectively (z2n2 and
κ2 are the neutral axis coordinate and the curvature of the un-cracked beam
portion, respectively). Equilibrium Eqs. (2.13) and (2.14) can be used to de-
termine z2n2 and κ2. For this purpose, nL, λi, ρi, υi, z1i, z1i+1, z1n1 and κ1
have to be replaced with n, λUi, ρUi, υUi, z2i, z2i+1, z2n2 and κ2, respectively.
The quantities, λUi, ρUi, υUi, are written as λUi = (SBi − SLi) / (z2i+1 − z2i)3,
ρUi = z2i+1 − z2n2 , υUi = z2i − z2n2 .

By substituting of u∗0Li , u
∗
0Ui

and Eq. (2.2) in (2.1) and doubling the expres-
sion obtained because of the symmetry (Fig. 1), one derives:

(2.16)

G = 2

i=nL∑
i=1

miκ
mi+1
1

b (mi+1)

{[
SLib

mti + 1
+

SHib

7 (mti+1)
+
λib (−z1i)3

mti+1

](
ρ
mti+1
i −υmti+1

i

)
+ 3λibz

2
1i

[
1

mti + 2

(
ρ
mti+2
i − υmti+2

i

)
+

z1n1

mti + 1

(
ρ
mti+1
i − υmti+1

i

)]

−3λibz1iqti

[
1

fti + 3qti

(
ρ

fti
+3qti
qti

i − υ
fti

+3qti
qti

i

)
+

2z1n1

fti + 2qti

(
ρ

fti
+2qti
qti

i − υ
fti

+2qti
qti

i

)

+
z21n1

fti + qti

(
ρ

fti
+qti
qti

i − υ
fti

+qti
qti

i

)]

+ λibqti

[
1

fti + 4qti

(
ρ

fti
+4qti
qti

i − υ
fti

+4qti
qti

i

)
+

3z1n1

fti + 3qti

(
ρ

fti
+3qti
qti

i − υ
fti

+3qti
qti

i

)

+
3z21n1

fti + 2qti

(
ρ

fti
+2qti
qti

i − υ
fti

+2qti
qti

i

)
+

z31n1

fti + qti

(
ρ

fti
+qti
qti

i − υ
fti

+qti
qti

i

)]}

−2

i=n∑
i=1

miκ
mi+1
2

b (mi + 1)

{[
SLib

mti + 1
+

SHib

7 (mti + 1)
+
λUib (−z2i)3

mti + 1

] (
ρ
mti+1

Ui − υmti+1

Ui

)
+ 3λUibz

2
2i

[
1

mti + 2

(
ρ
mti+2

Ui − υmti+2

Ui

)
+

z2n2

mti + 1

(
ρ
mti+1

Ui − υmti+1

Ui

)]
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(2.16)

[Cont.]

−3λUibz2iqti

[
1

fti + 3qti

(
ρ

fti
+3qti
qti

Ui − υ
fti

+3qti
qti

Ui

)
+

2z2n2

fti + 2qti

(
ρ

fti
+2qti
qti

Ui − υ
fti

+2qti
qti

Ui

)

+
z22n2

fti + qti

(
ρ

fti+qti
qti

Ui − υ
fti

+qti
qti

Ui

)]

+ λUibqti

[
1

fti + 4qti

(
ρ

fti
+4qti
qti

Ui − υ
fti

+4qti
qti

Ui

)
+

3z2n2

fti + 3qti

(
ρ

fti
+3qti
qti

Ui − υ
fti

+3qti
qti

Ui

)

+
3y22n2

fti + 2qti

(
ψ

fti
+2qti
qti

Ui − ζ
fti

+2qti
qti

Ui

)
+

y32n2

fti + qti

(
ψ

fti
+qti
qti

Ui − ζ
fti

+qti
qti

Ui

)]}
.

In formula (2.16), mti = mi + 1, fti/qti = mti , where fti and qti are positive
integers.

Formula (2.16) expresses the strain energy release rate in the two-dimensional
functionally graded multilayered beam configuration shown in Fig. 1, when the
mechanical behaviour and the material gradient are described by formulae (2.3)
and (2.4), respectively.

It should be noted that at mi = 1, nL = 1, n = 1, h1 = h2 = h, SLi = SBi =
E and SHi = 0 formula (2.16) yields

(2.17) G =
21M2

2Eb2h3
,

which matches exactly the expression for the strain energy release rate when the
beam is linear-elastic and homogeneous and the delamination crack is located
in the beam mid-plane [11].

Formula (2.16) is verified by analysing the delamination crack with the help
of the J-integral [12]. Due to the symmetry, only half of the beam is considered.
The integration is carried-out by using an integration contour, Γ , that coincides
with the beam contour (Fig. 1). It is obvious that the J-integral value is non-
zero only in segments, Γ1 and Γ2, of the integration contour (Γ1 and Γ2 coincide
with the cross-section of the lower crack arm in the beam mid-span and the
beam free end, respectively). Thus, the solution of the J-integral is written as

(2.18) J = 2(JΓ1 + JΓ2),

where JΓ1 and JΓ2 are the J-integral values in segments Γ1 and Γ2, respectively.
It should be noted that the expression in brackets in (2.18) is doubled because
of the symmetry (Fig. 1).
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The J-integral in segment, Γ1, of the integration contour is written as

(2.19) JΓ1 =

nL∑
i=1

z1i+1ˆ

z1i

[
u0Li cosα−

(
pxi

∂u

∂x
+ pyi

∂v

∂x

)]
ds,

where α is the angle between the outwards normal vector to the contour of
integration and the crack direction, pxi and pyi are the components of stress
vector in the i-th layer of the lower crack arm, u and v are the components of
displacement vector with respect to the crack tip coordinate system xy (x is
directed along the crack), ds is a differential element along the contour.

The components of the J-integral in segment, Γ1, are written as

pxi = −σi = −Siεmi , pyi = 0,(2.20)

ds = dz1, cosα = −1,(2.21)

where coordinate, z1, varies in the interval [−h1/2, h1/2].
Formula (2.7) is applied to determine the strain energy density, u0Li . The

following formula from mechanics of materials is applied to obtain the partial
derivative, ∂u/∂x, in (2.19):

(2.22)
∂u

∂x
= ε = (z1 − z1n1)κ1,

where z1n1 and κ1 are determined from equilibrium Eqs. (2.13) and (2.14).
By substituting of (2.3), (2.4), (2.7), (2.8), (2.20), (2.21) and (2.22) in (2.19),

one derives

(2.23)

JΓ1 =

i=nL∑
i=1

miκ
mi+1
1

mi + 1

{[
SLi

mti + 1
+

64SHiy
6
1

b6 (mti + 1)
+
λi (−z1i)3

mti + 1

](
ρ
mti+1
i − υmti+1

i

)
+ 3λiz

2
1i

[
1

mti + 2

(
ρ
mti+2
i − υmti+2

i

)
+

z1n1

mti + 1

(
ρ
mti+1
i − υmti+1

i

)]

−3λiz1iqti

[
1

fti + 3qti

(
ρ

fti
+3qti
qti

i − υ
fti

+3qti
qti

i

)
+

2z1n1

fti + 2qti

(
ρ

fti
+2qti
qti

i − υ
fti

+2qti
qti

i

)

+
z21n1

fti + qti

(
ρ

fti
+qti
qti

i − υ
fti

+qti
qti

i

)]

+ λiqti

[
1

fti + 4qti

(
ρ

fti
+4qti
qti

i − υ
fti

+4qti
qti

i

)
+

3z1n1

fti + 3qti

(
ρ

fti
+3qti
qti

i − υ
fti

+3qti
qti

i

)

+
3z21n1

fti + 2qti

(
ρ

fti
+2qti
qti

i − υ
fti

+2qti
qti

i

)
+

z31n1

fti + qti

(
ρ

fti
+qti
qti

i − υ
fti

+qti
qti

i

)]}
.
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It should be mentioned that in (2.23) the coordinate, y1, varies in the interval
[−b/2, b/2].

Formula (2.23) can also be used to obtain the solution of the J-integral in
segment, Γ2, of the integration contour (Fig. 1). For this purpose, nL, λi, ρi, υi,
z1i, z1i+1, z1n1 and κ1 have to be replaced with n, λUi, ρUi, υUi, z2i, z2i+1, z2n2

and κ2, respectively. Also, the sign of Eq. (2.23) must be set to “minus” because
the integration contour is directed upwards in segment, Γ2.

By substituting of JΓ1 and JΓ2 in (2.18), one arrives at

(2.24)

J = 2
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i=1
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1
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It should be noted that formula (2.24) expresses the distribution of the
J-integral value along the delamination crack front. The average value of
the J-integral along the delamination crack front is written as

(2.25) JAV =
1

b

b/2ˆ

−(b/2)

J dy1.

The fact that the solution of the J-integral derived by substituting of (2.24)
in (2.25) is exact match of the expression for the strain energy release rate (2.16)
is a verification of the fracture analysis developed in the present paper.

3. Numerical results

The influences of material gradient and crack location along the height of
the beam cross-section on the delamination fracture behaviour are analysed.
For this purpose, calculations of the strain energy release rate are carried-out
by applying formula (2.16). In order to elucidate the effect of crack location
along the height of the beam cross-section on the strain energy release rate, two
three-layered beam configurations are analysed (Fig. 4). A delamination crack is
located between layers 2 and 3 in the beam shown in Fig. 4a. A beam configura-
tion with a crack between layers 1 and 2 is also investigated (Fig. 4b). Each layer
in the beams in Fig. 4 has a thickness of tl = 0.002 m. The strain energy release
rate is presented in non-dimensional form by using the formula GN = G/ (SL3b).
It is assumed that b = 0.020 m, h = 0.003 m, M = 30 N ·m, mi = 0.7, fi = 7,
qi = 10, mti = 1.7, fti = 17 and qti = 10, where i = 1, 2, 3. The material gra-
dient along the width of layer 3 is characterized by SH3/SL3 ratio. It should be
specified that SL3 is kept constant in the calculations. Therefore, SH3 is varied
in order to generate various SH3/SL3 ratios. It is assumed that SL1/SL3 = 1.2,
SH1/SL1 = 1.4, SB1/SL1 = 1.3, SL2/SL3 = 1.5, SH2/SL2 = 1.1, SB2/SL2 = 1.2
and SB3/SL3 = 0.6. The strain energy release rate in non-dimensional form is
presented as a function of SH3/SL3 ratio in Fig. 5 for the two three-layered
beam configurations shown in Fig. 4. It can be observed in Fig. 5 that the strain
energy release rate decreases with increasing of SH3/SL3 ratio (this is due to
the increase of the beam stiffness). Figure 5 shows also the strain energy release
rate decreases when the crack location is changed from this shown in Fig. 4a to
that in Fig. 4b. This finding is attributed to the increase of the lower crack arm
stiffness.

The effect of the material gradient along the thickness of layer 3 on the de-
lamination fracture is evaluated too. The beam configuration shown in Fig. 4a
is considered. The material gradient along the thickness of layer 3 is character-
ized by SB3/SL3 ratio. The strain energy release rate in non-dimensional form
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a)

b)

Fig. 4. The geometry and loading of two three-layered two-dimensional functionally graded
beam configurations.
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Fig. 5. Variation of the strain energy release rate in non-dimensional form with SH3/SL3 ratio
(curve 1 – for the three-layered beam configuration with a delamination crack between layers 2
and 3 (refer to Fig. 4a), curve 2 – for the three-layered beam configuration with a delamination

crack between layers 1 and 2 (refer to Fig. 4b)).

is plotted against SB3/SL3 ratio in Fig. 6 at SH3/SL3 = 1.6. The curves in
Fig. 6 indicate that the strain energy release rate decreases with increasing of
SB3/SL3 ratio. The influence of non-linear behaviour of the material on the
delamination fracture is also investigated. For this purpose, the strain energy
release rate derived assuming linear-elastic behaviour of the functionally graded
beam configuration shown in Fig. 4a is plotted in non-dimensional form against
SB3/SL3 ratio in Fig. 6 for comparison with the non-linear solution. It should
be noted that the linear-elastic solution is derived by substituting of mi = 1 in
formula (2.16). It can be concluded from Fig. 6 that the non-linear behaviour
of material leads to increase of the strain energy release rate.

Fig. 6. Variation of the strain energy release rate in non-dimensional form with SB3/SL3 ratio
(curve 1 – at non-linear behaviour of the material, curve 2 – at linear-elastic behaviour of the

material).
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The distribution of the J-integral value along the delamination crack front is
also studied. For this purpose, calculations of the J-integral value are carried-out
by applying formula (2.24). The J-integral value is presented in non-dimensional
form by using the formula JN = J/ (SL3b). The three-layered beam configuration
shown in Fig. 4a is analysed. Two patterns of material gradient are considered in
order to evaluate the effect of material gradient along the width of layers on the
distribution of the J-integral value. Pattern 1 is characterized by SL1/SL3 = 1.2,
SH1/SL1 = 1.1, SB1/SL1 = 1.3, SL2/SL3 = 1.5, SH2/SL2 = 1.1, SB2/SL2 = 1.2,
SH3/SL3 = 1.1 and SB3/SL3 = 1.3. Pattern 2 of material gradient is charac-
terized by SL1/SL3 = 1.2, SH1/SL1 = −0.4, SB1/SL1 = 1.3, SL2/SL3 = 1.5,
SH2/SL2 = −0.4, SB2/SL2 = 1.2, SH3/SL3 = −0.4 and SB3/SL3 = 1.3. The
distribution of the J-integral value in non-dimensional form along the delami-
nation crack front is presented in Fig. 7 at the two patterns of material gradient.
Only the right-hand half of the delamination crack front is shown due to the
symmetry. The horizontal axis is defined such that y1/b = 0.0 is in the delam-
ination crack front centre. Thus, y1/b = 0.5 is in the right-hand lateral surface
of the beam. One can observe in Fig. 7 that the J-integral value in the delam-
ination crack front centre is the same for both patterns of material gradient.
This is due to fact that the material property, Si, does not depend on SHi at
y1 = 0 (refer to formula (2.4)). Figure 7 shows that at pattern 1 of material
gradient, the J-integral value has maximum in the delamination crack front
centre and gradually decreases towards the beam lateral surface. This is due to
the stiffness enhancement towards the beam lateral surfaces at SHi/SLi = 1.1,
i = 1, 2, 3. It can also be observed in Fig. 7 that at pattern 2 of material gradi-
ent, the distribution of the J-integral value is characterized by minimum in the
delamination crack front centre and a gradual increase towards the beam lateral
surface.

Fig. 7. Distribution of the J-integral value in non-dimensional form along the delamination
crack front (curve 1 – at pattern 1 of material gradient, curve 2 – at pattern 2 of material

gradient).
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4. Conclusions

The delamination fracture behaviour of a two-dimensional functionally graded
multilayered beam configuration that exhibits material non-linearity is stud-
ied analytically. The beam under consideration is made of an arbitrary number
of horizontal layers. A delamination crack is located arbitrary along the height of
the beam cross-section. Each layer has individual thickness and material prop-
erties. Besides, the material is two-dimensional functionally graded in the cross-
section of each layer. The fracture is studied in terms of the strain energy release
rate by analysing the beam complementary strain energy. In order to verify the
solution derived, the delamination crack is analysed also by using the J-integral
approach. Parametric investigations are carried-out in order to evaluate the
effects of material gradient, crack location and material non-linearity on the de-
lamination fracture. The material gradient along the thickness and the width
of layer is characterized by SBi/SLi and SHi/SLi ratios, respectively. The basic
findings from the analysis developed in the present paper can be summarized as
follows:

1) The strain energy release rate decreases with increasing of SBi/SLi and
SHi/SLi ratios.

2) The strain energy release rate decreases with increasing of the lower crack
arm thickness (the upper crack arm is free of stresses).

3) The non-linear behaviour of the material leads to increase of the strain
energy release rate.

4) The distribution of the J-integral value along the delamination crack front
is greatly affected by the material gradient along the width of the layers.

5) The delamination fracture in two-dimensional functionally graded multi-
layered beams with non-linear behaviour of material can be optimized by
choosing suitable material gradients.
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