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In this paper, nonlinear stability of axially compressed cylindrical panels simply sup-
ported according to two types of boundary conditions (with possible or limited circumferential
displacements of unloaded sides) is presented. Panels made of functionally graded materi-
als (FGMs) of two constituents (metallic and ceramic phases) are treated as multi-layered
composite structures with transverse inhomogeneity. Volume fractions of ceramics and metal
distribution throughout the layer thickness are described by a simple power law. The influence
of the transverse inhomogeneity of FGM panels on unsymmetrical stable post-buckling paths
is shown. Special attention is paid to effect of the imperfection sign on post-buckling paths of
investigated FGM panels. Some validations of the finite element analysis are discussed for
isotropic panels compressed according to two (force and kinematic) loading schemes.
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Notations

a – unloaded axial dimension of a panel,
A, B, D – extensional, coupling and bending stiffness matrices,

b – loaded circumferential dimension of a panel,
E, Em, Ec – Young’s moduli of an isotropic material, metal and ceramics,

k – curvature parameter,
N , M – stress and moment resultants,
Ncr – critical load,
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p – intensity of axial compression,
q – volume fraction exponent (i.e., for q = 0 – panel is fully ceramic and for

q =∞ – panel is metallic),
R – panel radius,

rot x, rot y, rot z – possible rotations about corresponding coordinates x, y, z,
t – panel thickness,

ux, uy, uz – possible displacements along corresponding coordinates x, y, z,
Vm, Vc – volume fractions of metal and ceramics,

w – panel deflection (along coordinate x),
w∗ – initial imperfection,

x, y, z – radial, circumferential and axial coordinates in the cylindrical coordinate
system,

εx, εy, εxy – extension deformations,
κx, κy, κxy – bending deformations,
ν, νm, νc – Poisson’s ratio of an isotropic material, metal and ceramics.

1. Introduction

In the 1980s, the concept of heterogeneous material resistant to high tem-
peratures was first presented. This was functionally graded material (FGM) in
which the material properties are gradually changing along the thickness direc-
tion. In the beginning of twenty-first century, we have witnessed a particularly
intensive development of research on the structures made of FGMs. Birman
and Byrd [1] presented the state-of-the-art review of the principle develop-
ments in modelling and analyses of functionally graded (FG) structures in the
first decade of the twenty-first century. Liew et al. [2] reviewed different types
of finite element analyses. Jha et al. [3] presented a review of the papers on
thermoelasticity and vibration of FGM structures. In 2015, the latest to date
review was presented by Swaminathan et al. [4], in which authors discussed
various methods of analysis used for the stress, vibration and buckling of FGM
structures under different types of mechanical and/or thermal loads. In their
study, the thin-walled columns and/or beams consisting of plate elements are
subjected to different static loads and can buckle in different modes from global
(i.e., flexural, flexural-torsional, lateral, distortional) to local and the coupled
buckling modes. The length of column is the most important. If a column is
short, the local mode is the lowest mode and local buckling takes place. For
a long column, the global buckling mode is the lowest mode.

The eigenvalue problem of FGM structures under mechanical load can be
solved using the analytical methods based on the three-dimensional elasticity
theory and the two-dimensional elasticity theory or the finite element method
(FEM). The buckling loads and modes are found in FGM structures under vari-
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ous boundary and loading conditions. Birman [5] was the first to solve the eigen-
value problem of FGM plates under mechanical loads. Ma and Wang [6] com-
pared the solutions of buckling problem obtained using the first-order (FSDT),
third-order (TSDT), and classical (CPT) plate theories. The first-order plate
theory (FSDT) is sufficient to consider the buckling of FGM structures. Mo-
hammadi et al. [7] presented some solutions for a buckling problem of thin
FGM plates based on the classical plate theories subjected to different mechan-
ical loads under various boundary conditions. The pre-buckling state of FGM
plates based on the Mindlin theory was discussed by Naderi and Saidi [8]. The
eigenvalue problem of the FGM structures under mechanical load using FEM
was investigated by Bateni et al. [9], Naei et al. [10], Lee and Kim [11] and
many more.

Post-buckling states were obtained using an analytical numerical method
by Yang and Shen [12]. Authors used perturbation to investigate the post-
buckling behaviour of the clamped FGM rectangular plates based on the CPT
under transverse and in-plane loads, and presented some unique characteristics
of structures made of FGM composite. Yang et al. [13] studied the influence
of initial imperfection on the post-buckling behaviour of FGM plates based
on the first-order plate theory (FSDT) under various boundary conditions. In
their study, it was shown that imperfections of FGM structures are much less
important in comparison to isotropic material structures. The FEM approach
was also used to determine the post-buckling behaviour of FGM structures by
Lee and Kim [11]. More results for the nonlinear post-buckling analysis of this
type of elements under different types of loads are shown in the monograph by
Hui-Shen [14].

FGMs are still a relatively new class of composite materials used in numer-
ous engineering applications. A standard FGM is an inhomogeneous composite
made of two constituents – typically metallic and ceramic phases. The combina-
tion of ceramics with a metal component renders specific characteristics to FG
structures, such as better resistance to high temperature (ceramics) and good
mechanical features (metal), which further reduce possibility of the fracture of
the whole gradient structure. These features make high temperature environ-
ments the leading application area for FG structures. In the case of the FGM
layer, volume fractions of ceramics and metal distribution throughout the layer
thickness are described by a simple power law. Transverse inhomogeneity of FG
panels according to the classical laminate plate theory (CLPT) has a non-trivial
coupling matrix B (for more details see Appendix).

In [15], on the basis of Koiter’s nonlinear theory of conservatory systems, it
was shown that the FG plate structures have unsymmetrical stable post-buckling
equilibrium paths. Due to the presence of the transverse inhomogeneity (i.e.,
equivalent to nontrivial submatrix B), the coupling between extensional and
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bending deformations exists. For example, cylindrical isotropic panels subjected
to compression have the unsymmetrical stable post-buckling paths.

As it follows from the short review of present state-of-the-art studies con-
cerning composite structures research, there are also some researches [16–22]
that deal with post-buckling analyses of compressed panels with various bound-
ary conditions, mostly assuming clamped and/or simple supports. And even
such common supports can be realised differently [22], which is not adequately
researched at the moment. The same applies to the influence of transverse in-
homogeneous real FG panels on the load-deflection response.

In this paper, the influence of the transverse inhomogeneous FG panels on
the unsymmetrical stable post-buckling paths of cylindrical panels (i.e., the in-
teractive effects of the two unsymmetrical post-buckling paths) is taken into
account for two types of boundary conditions, which is associated with simple
support at all edges, and possible or limited circumferential displacements of
unloaded sides. Attention is paid to an effect of the imperfection sign (sense),
and, therefore, to various post-buckling equilibrium paths of real structures with
imperfection. Also, some validations of the finite element analysis are discussed
for an isotropic panels compressed according to two different loading schemes
[23] (see Sec. 4).

2. Formulation of the problem

The commercial ANSYS software is applied in the numerical calculations.
In the finite element method solution, FG panels are modelled as multi-layered
composite structures [16], whose graded material properties in the range of 10–
40 isotropic layers [17] are defined. After the convergence analysis, the model
with twenty layers is accepted. For meshing, a shell element (SHELL181 from
ANSYS library) is employed with four nodes and six degrees of freedom at each
node, and the total number of degrees of freedom is equal to 4056.

The initial imperfections are introduced by updating the finite element mesh
with the first mode shape of the eigen-buckling solution, with an assumed mag-
nitude corresponding to the panel thickness. The eigen-buckling analysis deter-
mined the critical load in spite of the fact that an eigenmode and analysis of
the modes preceded the nonlinear buckling analysis.

Cylindrical shallow panels (Fig. 1) subjected to axial compression along di-
rection z are considered. Axial compression is applied as uniform forces dis-
tributed along the curved edges of the panels (force loading, [23]). All panels
are subject to Hooke’s law. A detailed analysis of the calculations is conducted
for thin-walled panels with the following dimensions (Fig. 1): a = b = 77.5 mm,
t = 1.0 mm, R = 500.0 mm (thickness parameter – R/t = 500). The curvature
parameter is k = b2/Rt = 12.
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Fig. 1. Cylindrical shallow panels of variant II and III with BCs1.

Two types of boundary conditions are studied (according to ANSYS desig-
nation in global cylindrical coordinate system):
• BCs1 – simple support at all edges. As a result, radial displacements ux = 0

are at all edges, and in addition, circumferential displacements uy = 0 are
at two points (0, 0, 0) and (0, 0, a), as well as vertical displacements uz = 0
are in the middle of a panel (0, b/2, a/2).
• BCs2 – simple support at loaded edges, where radial displacements ux = 0,

and hinged support at unloaded edges, where both radial and tangent
displacements ux = uy = 0, in addition vertical displacements uz = 0 are
in the middle of a panel (0, b/2, a/2).

The assumed boundary conditions of the first type and the division into
finite elements are presented in Fig. 1.

The panels are made of two materials:
• isotropic material (aluminium) with the following material properties: E =

79.28 GPa and ν = 0.3268.
• Al-TiC functionally graded material for the fraction exponent (A1) (see

Appendix) q = 1.0 [15]. The component material properties of Al-TiC
functionally graded materials are as follows: for aluminium: Em = 69 GPa,
νm = 0.33, for TiC: Ec = 480 GPa, νc = 0.20.

Three variants of the panels are considered, namely:
• variant I – isotropic panel (the so-called reference variant), IP;
• variant II – FG panel (ceramic internal surface of the cross-section, metal

– external surface), PCM;
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• variant III – FG panel (metal internal surface of the cross-section, external
surface made of ceramics), PMC.

The isotropic panel is transverse homogeneous symmetric, whereas the FG
panels are transversely inhomogeneous. Two variants of FG structures are as-
sumed, and two cases of manufacturing such panels are possible. The ceramic
surface is resistant to high temperatures. Variant II protects the internal surface
of the panel against high temperature, whereas variant III protects the external
surface.

3. Analysis of the results

As the first stage of the present numerical research, linear solutions have
been realised. Table 1 shows critical values for three variants of the considered
panels for both types of boundary conditions. Although the material of panels
BCs2 provides the level of critical loads about two times higher than BCs1,
panels supported by BCs1 have buckling modes (Fig. 2a) with one half-wave
outwards the panel centre of curvature for FG structures and inwards in the
case of isotropic material. BCs2 impose two half-wave modes (Fig. 2b) for both
isotropic and composite materials. Generally, panels made of PMC demonstrate
higher level of buckling loads than panels made of PCM, regardless of the type
of boundary conditions. This fact can be also observed in the further presented
nonlinear analyses (Figs. 3–5).

Table 1. Critical load Ncr for three variants of the panel and two schemes
of boundary conditions.

Critical load Schemes of boundary
conditions

Variant I – IP Variant II – PCM Variant III – PMC

Ncr [kN]
BCs1 4.794 13.478 14.110

BCs2 8.850 24.947 27.765

a) b)

Fig. 2. The eigen-buckling modes and the shape of imperfections: a) BCs1 and b) BCs2.
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a) b)

Fig. 3. Isotropic panel IP: a) BCs1 and b) BCs2.

a) b)

Fig. 4. FG panel PCM: a) BCs1 and b) BCs2.

Post-buckling equilibrium paths for perfect and real panels with imperfec-
tions are presented in Figs. 3–5. These figures depict an influence of the external
loading on the panel maximal deflection w. Various values of initial imperfec-
tions of the FG panels are studied: w∗ = −0.02t, 0.02t, −0.2t and 0.2t. In the
case of the isotropic panel (variant I), only the two first values of imperfection
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a) b)

Fig. 5. FG panel PMC: a) BCs1 and b) BCs2.

are considered. The considered signs (senses) of imperfection of composite panels
are shown in Fig. 1, accordingly to the used coordinate system.

For isotropic panels with BCs1 (Fig. 3a), one can see that the imperfection
w∗ sign exerts a considerable influence on different post-buckling equilibrium
paths, i.e., on various signs of the deflection w values, which is disclosed by the
shape of imperfections (Fig. 2a). This effect can be easily explained [17, 20] by
the fact that the coupled submatrix B is different from zero for the FG panels.
Similar effects can be also observed for composite panels when the submatrix B
is non-zero. Obviously, BCs2 cannot reveal this effect because of the symmetry
of imperfections (Fig. 2b) neither for isotropic panels I nor for FG panels II
and III (Figs. 4b and 5b).

For the PCM panels with BCs1, the imperfection w∗ sign does not affect
the deflection w direction towards the panel centre (Fig. 4a). Also for the PMC
panels with BCs1 (Fig. 5a), the imperfection w∗ sign does not influence the
deflection w direction outside the panels. In Fig. 5a, the curves for the imper-
fection w∗ = −0.2t, 0.2t overlap, identically as for w∗ = −0.02t, 0.02t. As it can
be easily observed in Figs. 4a and 5a, the imperfection sign does not affect the
displacements w for the PCM and PMC panels. However, the absolute quantity
w∗ exerts such an influence.

In the case of FG panels with BCs2 (due to the symmetrical shape of im-
perfections), equilibrium paths are identical and they do not depend on the
imperfection sign, however the imperfection magnitude is still important. Let us
also note that a general level of buckling loads is higher for BCs2 than for BCs1,
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but there is a principal difference between post-buckling equilibrium paths for
the two boundary conditions. Panels of all variants with BCs2 have both down-
going and up-going branches (Figs. 3b, 4b, 5b), while panels with BCs1 have
mostly up-going branches (Figs. 3a, 4a, 5a). Exceptions can be found only at
positive imperfections w∗ for material of I (isotropic) and II (PCM) variant.

Figure 6 illustrates some typical nonlinear buckling modes of PCM panels at
different levels of axial compression for both boundary conditions. The first line

a) b) c) d)

1)

2)

3)

Fig. 6. Nonlinear buckling modes for PCM (variant II) panel BCs1: a) perfect, b) w∗ = 0.2t
and panel BCs2: c) perfect, d) w∗ = ±0.2t.
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of modes corresponds to limit loads (1). If there are no down-going equilibrium
branches, load level is chosen according to the same values of the panel deflection.
The second line corresponds to lower critical loads (2), and the last line of modes
corresponds to the end of loading (3).

Buckling modes of perfect PCM (variant II) panels with BCs1 (Fig. 6a) are
the same in the case of PCM panels with imperfections w∗ = −0.2t, ±0.02t.
The same is also the case for isotropic panels (variant I perfect and imperfect)
and for PMC panels (variant III perfect and imperfect). However, in the last
variant of material, the curvature of shapes is outwards the centre of the panels.
Relatively high level of the limit load for the PCM panel with w∗ = 0.2t (Fig. 4a)
is accompanied by a rather complicated mode that is presented in Fig. 6b-1.

Nonlinear buckling modes of PCM (variant II) panels with imperfections
w∗ = ±0.2t (Fig. 6d) keep a linear shape with two half-waves (Fig. 2b). The same
behaviour is also characteristic for PCM (variant II) panels with imperfections
w∗ = ±0.02t and for PMC (variant III) panels with imperfections w∗ = ±0.2t.

In the case of BCs2 perfect isotropic (variant I), perfect PMC (variant III)
and PMC with imperfections w∗ = ±0.02t, the panels buckle in the same manner
as perfect PCM (variant II, Fig. 6c-2 and 6c-3). However, the limit loads for
variants I and III are accompanied by buckling modes of inverse deformation
(Fig. 6c-1), in which there is a dent in the middle and two buckles at the edges.

Nonlinear buckling modes of PCM (variant II) panels with imperfections
w∗ = ±0.2t (Fig. 6d) keep a linear shape with two half-waves (Fig. 2b). The
same behaviour is also specific for PCM (variant II) panels with imperfections
w∗ = ±0.02t and for PMC (variant III) panels with imperfections w∗ = ±0.2t.

4. Effect of loading scheme

In the previous sections, we have discussed two different types of boundary
conditions with assumption of the traditional scheme of a compressive loading.
The classical axial compression has been presented as uniform forces distributed
along curved edges. Most analytical models use this scheme of loading. However,
this is not accomplished in the practice and experiments. Nevertheless, it is still
reasonable to model such scheme, as it always appears more or less in the case
of real structures loading. Besides, the force loading provides the lowest bound
of predicted buckling loads in comparison with kinematic loading [23], which
can be applied as uniform displacements distributed along curved edges. The
comparison of force and kinematic loadings is insufficiently studied in literature
despite the essential effect of both loadings on the panel response and responses
of other structures with essentially non-uniform stress-strain state.

In this research, we studied the effect of loading scheme (force or kinematic
loading) on post-buckling equilibrium paths for an isotropic cylindrical panel.
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Due to the open cross-section geometry of panels the effect of loading scheme was
to be discovered. To compare and verify the results of our numerical simulations,
we used geometrical and mechanical parameters of panels obtained in [19, 22].
The panels were characterised, according to the previous sections, with thickness
parameter R/t = 462 and another curvature parameter k = 27, a = 374.65 mm,
b = 368.3 mm, t = 3.3 mm, and R = 1524.0 mm. Material properties referring
to aluminium are: Em = 68.95 GPa, and νm = 0.33. Boundary conditions (BCs3
in the former designation) are as follows [19, 22]: clamped along the loaded and
simply supported along unloaded edges. Therefore, radial displacements ux = 0
and rot y = 0 at all edges, circumferential displacements uy = 0 and rot z = 0
along loaded edges, and in addition, vertical displacements uz = 0 in the middle
of a panel (0, b/2, a/2).

Geometrically linear (bifurcation) and nonlinear analyses of perfect panels
and panels with imperfections were performed. Then, the numerical results were
validated with solutions presented in [19, 22]. In Fig. 7, we can see responses
of central deflection on buckling loads of panels, as well as solutions [19, 22].
Considered loading schemes provide the same qualitative response of panels for
different levels of axial loads. Two unlike behaviours of panels can be found in
Fig. 7. First one is associated with outward deformations of a panel. The panel
has a monotonically increasing stable response, where free expansion of panel
edges in the circumferential direction is limited (uy = 0). In this case, results of
geometrically nonlinear analyses of perfect panels loaded both with kinematic
and force compression are in good agreement with a solution [22] found for
kinematic loading and prescribed BCs3.

Fig. 7. Comparison of buckling analysis results for compressed aluminum panels
with different loading conditions.



574 O. LYKHACHOVA, Z. KOŁAKOWSKI

The other response of the panel [22] is observed when free expansion of
curved loaded edges is possible. In that case, Nzy = 0 was an input instead
of uy = 0 and the panel deformed inwards. Although we could not achieve
modelling Nzy = 0 at the loaded edges, we performed calculations of panels
with various inward imperfections for both considered schemes of compression.
As a result, the difference between the numerical limit load and the solution
[22] was reached to be about 1% for the kinematic loading of the panel with
imperfections w∗ ∼ −0.1t, while the force loading decreased buckling load at
34% for the same imperfection magnitude. By contrast, linear buckling solution
for the force loading provides better agreement with the solution presented in
[22] than for the kinematic loading (see Table 2).

Table 2. Comparison of critical load Ncr for an aluminium panel with BCs3.

Loads
Schemes

of boundary
conditions

Schemes
of loading

ANSYS
Difference

to Thornburgh,
Hilburger [22]

Difference
to Liew et al. [19]

Ncr [kN] BCs3
kinematic 111.5 20% 22%

force 89.51 4% 3%

Overall, different schemes of loading allow to accurately enough predict the
load-deflection response of isotropic cylindrical panels considered in known solu-
tions and experiments. In the case of perfect panels, differences between schemes
are negligible, while in the case of imperfections they are more significant and
ought to be taken into account.

5. Conclusions

In this paper, the influence of the transverse inhomogeneity on post-buckling
equilibrium paths of FG cylindrical panels under compression was analysed. This
effect is associated with the interaction of two unsymmetrical post-buckling
paths for the FG panels.

Numerical analysis of buckling problem of compressed cylindrical panels with
imperfections is realised using ANSYS software for three variants of material:
isotropic and two FGMs (PMC and PCM), and two types of boundary conditions
(BCs1 – simply supported at all edges and BCs2 – simply supported at loaded
edges, hinged supported at unloaded edges).

Regardless of the type of boundary conditions, panels made of PMC (ceram-
ics outside) demonstrate a higher level of buckling loads than panels made of
PCM (metal outside).

For BCs1 with possible circumferential displacements, the sign of imperfec-
tion exerts an influence on the post-buckling equilibrium path of the FG panels.
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This effect can be easily explained by the fact that the coupled submatrix B
is different from zero for the FG panels. Similar effects can be also observed in
composite panels when the submatrix B is non-zero.

For BCs2 with restrained circumferential displacements, the influence of the
imperfection sign is not found due to the symmetry of imperfections.

Validation of numerical buckling results of isotropic cylindrical panels com-
pressed according to different (force and kinematic) loading schemes was carried
out. In general, different schemes of loading allow to accurately enough predict
the load-deflection response of panels considered in known solutions and exper-
iments. In the case of perfect panels, differences between loading schemes are
negligible, while in the case of imperfections they are more significant and ought
to be taken into account.

Appendix

In thin-walled FG structures such as plates, panels or shells, the volume
fractions of ceramics Vc and metal Vm are described usually by a simple power
law of distribution throughout the structure thickness t:

(A.1) Vc(z) = (z/t+ 0.5)q , Vm(z) = 1− Vc(z).

According to the rule of mixture, the properties of the functionally graded
material (Young’s modulus, Poisson’s ratio) can be expressed:

(A.2) E(z) = Em + (Ec−Em)

(
z

t
+

1

2

)q
, ν(z) = νm + (νc− νm)

(
z

t
+

1

2

)q
.

Using the CLPT, the stress and moment resultants (N , M) for FGM panel
structures are defined as [15, 16, 20, 21]

(A.3)
{
N
M

}
=

[
A B
B D

]{
ε
κ

}
,

where: A, B, D are extensional, coupling and bending stiffness matrices, respec-
tively, and

(A.4) {ε} =


εx
εy

2εxy

, {κ} =


κx
κy
κxy

.
Due to the presence of the non-trivial submatrix B, the coupling between

extensional and bending deformations exists as it is in the case of non-symmetric
laminated panels [16, 20, 21]. An extensional force results not only in extensional
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deformations, but also in bending of the FGM panel. Moreover, such a panel
cannot be subjected to the moment without suffering simultaneously from exten-
sion of the middle surface. The coupling between extension and bending follows
from a combination of the geometry and FGM properties in that structure. The
coupling affects strongly the constitutive equations and the boundary condi-
tions that have a complex form, and the solution procedures become thereby
difficult [15].
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