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This paper deals with the identification of material parameters at a microscale on the basis
of measurements at a macroscale. Inhomogeneous materials such as composites and porous me-
dia are considered. Numerical homogenization with the use of a representative volume element
is performed to obtain a macroscopically homogenized equivalent material. The evolutionary
algorithm is applied as the global optimization method to solve the identification task. Modal
analysis is performed to collect data necessary for the identification. Different ranges of mea-
surement errors are considered. A finite element method is employed to solve a boundary-value
problem for both scales.
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1. Introduction

Microscopically inhomogeneous materials like composites or porous materials
are an important group of structural materials. Their macroscopic material prop-
erties depend on such parameters as the properties of constituent materials, the
volume fraction of constituents and the shape and the location of reinforcement
or voids. The determination of the properties of constituents of inhomogeneous
materials is an essential problem in many engineering applications.
It is assumed that the considered material is macroscopically homogeneous

and microscopically heterogeneous. To determine the effect of microstructure
of heterogeneous materials on their behaviour at the macro level, different ho-
mogenization methods may be applied [1]. A numerical homogenization method
with the representative volume element (RVE) concept is employed to obtain
the connection between the two considered scales [2].
The aim of this paper is to perform the identification of the micro-properties

of the constituents of composite and porous media on the basis of the measure-
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ments performed at a macroscale. The identification is performed by means of
global optimization methods in the form of the evolutionary algorithm (EA)
to avoid problems with multimodal objective functions and the calculation of
the objective function gradient [3]. The finite element method software ANSYS
Workbench is applied to both scales to solve the boundary-value problem. Modal
analysis of the components made of inhomogeneous materials is carried out to
obtain necessary measurement data [4].

2. Formulation of the problem

The aim of the identification is to estimate the properties of the constituents
of an inhomogeneous material at the microscale level by means of the measure-
ments performed at the macrolevel [5]. The following properties are identified:
(i) the volume ratio and the elastic constants (Young’s modulus E and Pois-
son’s ratio v) for both isotropic constituents of composite materials, and (ii) the
porosity p and the elastic constants of the material without pores in the case of
the porous material.
The identification is performed as the minimization of an objective fun-

ction J0:

(2.1) min: J0pxq � Ņ

i�1

ppqi � qiq2,
where x � pxiq is a vector of identified parameters, pqi are measured values of
state fields, qi are values of the same state fields calculated for the numerical
model, N is a number of measurement data.
To solve the identification problem, multi-objective genetic algorithm (MOGA),

included in the ANSYS Workbench software, is employed. The application of
the FEM software and an optimization tool available in the same software pack-
age reduces the time necessary for data exchange between different algorithms.
MOGA is based on a well-known Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [6]. MOGA takes advantage of controlled elitism concepts and sup-
ports binary and floating-point input parameters. It can be applied to single-
objective and multi-objective optimization problems. The application of the
evolutionary algorithm to the multi-objective and multi-scale optimization of
inhomogeneous materials is presented in [7].

3. Numerical homogenization

The aim of the homogenization is to obtain a medium macroscopically equiv-
alent to a non-homogeneous medium in a microscale [8]. The microscale be-
haviour of the considered materials is described by differential equations with
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discontinuous coefficients. To obtain the equivalent properties of macroscopic
material, a different method of homogenization can be used (e.g., mean-field
approach, variational methods). In this paper, the numerical homogenization
has been performed due to its ability of modelling the complex geometry of
microstructure [9].
To perform the numerical homogenization a proper RVE has to be created.

A RVE describes the structure of the whole material (global periodicity) or its
part (local periodicity) [9]. The analysis of the RVE allows to determine the
constitutive relation between averaged field variables, like stresses or strains,
of the microscopic model. To apply the RVE homogenization concept, some
conditions have to be satisfied: the Hill-Mandel condition, appropriate boundary
conditions and separation of scales rule [10].
As the FEM method is applied to solve the boundary-value problem in both

considered scales, the RVE has to be assigned to each integration point at the
micro-scale.

4. Numerical examples

Two different structures: a porous cantilever beam and a particle-reinforced
composite are considered. The aim of the identification is to find some param-
eters of the structure at the microscale with some quantities measured at the
macroscale. Modal analysis data are considered as the macroscale measurements.
The uniform displacement boundary conditions are imposed on RVEs in both
cases. As the unit cell (a RVE with one inclusion) is not sufficient for this type of
boundary conditions due to inadequate homogenization precision [11], the more
complicated RVEs have been proposed.
The identification is performed for both structures with the following param-

eters of the evolutionary algorithm: the number of individuals pop size � 100,
the arithmetic crossover probability pac � 0.98, the uniform mutation probabi-
lity pum � 0.01, and the maximum number of iterations nit � 12.

4.1. Numerical example 1

The porous steel cantilever beam of dimensions b�h�l � 20�30�100 mm is
considered (Fig. 1a). Two elastic constants (E, ν) and the porosity of the beam p

are the design variables. Homogenized material properties are obtained by the
numerical homogenization of a RVE containing 27 uniformly distributed spheri-
cal voids (Fig. 1b). First five eigenfrequencies of the beam are taken into account
as macroscopic measurement data for the objective function calculation. Three
cases of measurements data were considered: the ideal one and the data with two
levels of maximum measurement error of normal distribution: 1% and 5%. The
design variables ranges are 70–400 GPa for E, 0.25–0.35 for v, and 12.5–17.5%
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a) b)

Fig. 1. a) The cantilever beam and b) the RVE geometry.

for p with the actual values E � 200 GPa, v � 0.3 and p � 15%. The porosity
range is the result of the assumption that the porosity can be estimated with
the accuracy of 5% [12]. The density is determined by the measurement of mass
of the beam and the assumed value of porosity.
The values of the design variables and identification errors for different mea-

surement errors are collected in Table 1. In this case, the imprecise measurements
decrease the identification precision proportionally to the measurement error.

Table 1. The cantilever beam – the identification results.

Measurement error [%]
Found values Error [%]

p [%] E [GPa] v [ ] p E v

0 14.590 198.803 0.299 2.73 0.59 0.25

1 14.585 199.570 0.303 2.77 0.22 0.96

5 15.598 200.827 0.298 3.99 0.41 0.74

4.2. Numerical example 2

The particle-reinforced composite connecting rod is considered (Fig. 2a). It is
assumed that the material of the matrix of the composite is known (aluminium)
and as a result two elastic constants of the reinforcement material (E, ν) and the
reinforcement volume fraction V are the design variables. Homogenized material
properties are obtained by the numerical homogenization of a RVE containing 27
uniformly distributed spherical reinforcements. First six eigenfrequencies of the
structure are the measurement data. As in the first example, three cases of
macroscopic measurements precision are considered. The design variables ranges
are 300–700 GPa for E, 0.12–0.25 for v and 5–40% for V . The actual values of
the identified constants are: E � 410 GPa, v � 0.14 and V � 20%.
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a) b)

Fig. 2. a) The connecting rod geometry and constraints, b) the RVE geometry.

The identified values of the design variables and the identification errors are
collected in Table 2. It can be observed that the precise measurements do not
guarantee the best identification results, which may be an important issue in
real problems.

Table 2. The connecting rod – the identification results.

Measurement error [%]
Found values Error [%]

V [%] E [GPa] v [ ] V E v

0 21.339 366.36 0.154 6.70 10.64 10.16

1 19.933 403.74 0.124 0.34 1.53 11.41

5 19.853 435.718 0.156 0.73 6.27 11.42

5. Final conclusions

The multiscale identification of the properties of microscopically inhomo-
geneous material has been performed. To solve the identification problem, the
numerical homogenization methods, evolutionary algorithms and finite element
method software have been simultaneously employed. RVEs with 27 uniformly
distributed voids/reinforcements have been used instead of RVEs with single
inclusion in order to obtain the required homogenization accuracy. The identi-
fication of the selected parameters at a microscale has been performed on the
basis of macroscale measurements. Numerical experiments have been performed
to collect necessary data. As the real measurements are always imprecise, differ-
ent levels of the measurement error have been introduced. Positive evolutionary
identification results have been obtained in all cases, including a relatively high
measurement error. The proposed method may be applied to different non-
homogeneous structures and different mechanical, thermal and other problems,
including coupled ones.
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