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The objects of consideration are thin linearly elastic Kirchhoff-Love-type open circular
cylindrical shells having a functionally graded macrostructure and a tolerance-periodic mi-
crostructure in circumferential direction. The aim of this note is to formulate and discuss
a new non-asymptotic averaged model for the analysis of selected dynamic problems for these
shells. The proposed asymptotic-tolerance model equations have continuous and slowly varying
coefficients depending also on a cell size. An important advantage of this model is that it
makes it possible to study micro-dynamics of tolerance-periodic shells independently of their
macro-dynamics.
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1. Formulation of the problem, starting equations

Thin linearly elastic Kirchhoff-Love-type open circular cylindrical shells with
a tolerance-periodic microstructure in circumferential direction are analysed.
It means that on the microscopic level, the shells under consideration consist
of many small elements. These elements, called cells, are treated as thin shells.
It is assumed that the adjacent cells are nearly identical, but the distant elements
can be very different. An example of such shell is shown in Fig. 1. At the same
time, the shells have constant structure in axial direction. On the microscopic
level, the geometrical, elastic and inertial properties of these shells are deter-
mined by highly oscillating non-continuous tolerance-periodic functions in x. By
tolerance periodic functions we shall mean functions which in every cell can be
approximated by periodic functions in x.
On the other hand, on the macroscopic level, the averaged (effective) prop-

erties of the shells are described by functions being smooth and slowly varying
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Fig. 1. An example of a shell with a tolerance-periodic microstructure.

along circumferential direction. It means that the tolerance-periodic shells under
consideration can be treated as made of functionally graded materials (FGM),
cf. [2], and called functionally graded shells. Moreover, since effective properties
of the shells are graded in direction normal to interfaces between constituents,
this gradation is referred to as the transversal gradation.
The dynamic problems of such shells are described by partial differential

equations with highly oscillating, tolerance-periodic and non-continuous coef-
ficients, so these equations are too complicated to apply to investigations of
engineering problems. To obtain averaged equations with continuous and slowly
varying coefficients, a lot of different approximate modelling methods have been
proposed. Periodic and tolerance-periodic structures are usually described using
homogenized models derived by means of asymptotic methods, cf. [1, 2]. Unfor-
tunately, in the models of this kind the effect of a microstructure size (called the
length-scale effect) on the overall shell behaviour is neglected. This effect can
be taken into account using the tolerance averaging technique, cf. [4, 5]. Some
applications of this method to the modelling of mechanical and thermomechani-
cal problems for various periodic and tolerance-periodic structures are shown in
many works. The extended list of papers and books on this topic can be found
in [3–5].
The aim of this contribution is to formulate a new averaged combined asym-

ptotic-tolerance model for the analysis of selected dynamic problems for the
transversally graded cylindrical shells under consideration. Governing equations
of the proposed model have continuous and slowly varying coefficients depending
also on a microstructure size λ. Hence, this model makes it possible to describe
the effect of a length scale on the dynamic shell behaviour. The model will be
derived applying the combined asymptotic-tolerance modelling technique given
by Woźniak in [5].
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We assume that x1 and x2 are coordinates parametrizing the shell midsur-
face M in circumferential and axial directions, respectively. We denote x � x1 P
Ω � p0, L1q and ξ � x2 P Ξ � p0, L2q, where L1, L2 are length dimensions of
M , cf. Fig. 1. Let Ox1x2x3 stand for a Cartesian orthogonal coordinate system
in the physical space R3 and denote x � px1, x2, x3q. A cylindrical shell mid-
surface M is given by M �  

x P R3 : x � r
�
x1, x2

�
,
�
x1, x2

� P Ω� Ξ
(
, where

rp�q is the smooth function such that Br{Bx1 � Br{Bx2 � 0, Br{Bx1 � Br{Bx1 � 1,Br{Bx2 � Br{Bx2 � 1. It means that on M we have introduced the orthonormal
parametrization. Sub- and superscripts α, β, . . . run over 1, 2 and are related
to x1, x2, summation convention holds. Partial differentiation related to xα is
represented by Bα. Moreover, it is denoted Bα...δ � Bα...Bδ . Let aαβ stand for the
midsurface first metric tensor. Under orthonormal parametrization aαβ is the
unit tensor. The time coordinate is denoted by t P I � rt0, t1s. Let dpxq and r

stand for the shell thickness and the midsurface curvature radius, respectively.
The basic cell ∆ is defined by: ∆ � r�λ{2, λ{2s, where λ is a cell length

dimension in x � x1-direction. The microstructure length parameter λ satisfies
conditions: λ{dmax " 1, λ{r ! 1, and λ{L1 ! 1.
Denote by uα � uαpx, ξ, tq, w � wpx, ξ, tq, px, ξ, tq P Ω � Ξ � I,

the shell displacements in directions tangent and normal to M , respectively.
Elastic properties of the shells are described by shell stiffness tensors Dαβγδpxq,
Bαβγδpxq. Let µpxq stand for a shell mass density per midsurface unit area. The
external forces will be neglected.
It is assumed that the behaviour of the shell under consideration is described

by the action functional determined by Lagrange function L being a highly
oscillating function with respect to x and having the well-known form

(1.1) L � �1

2

�
DαβγδBβuαBδuγ � 2

r
Dαβ11wBβuα� 1

r2
D1111ww �BαβγδBαβwBγδw � µaαβ 9uα 9uβ � µ 9w2



.

Applying the principle of stationary action we arrive at the system of Euler-
Lagrange equations, which can be written in explicit form as

(1.2)
BβpDαβγδBδuγq � r�1BβpDαβ11wq � µaαβ:uβ � 0,

r�1Dαβ11Bβuα � BαβpBαβγδBγδwq � r�2D1111w � µ :w � 0.

It can be observed that Eqs. (1.2) coincide with the well-known governing
equations of Kirchhoff-Love theory of thin elastic shells. For periodic shells,
coefficients Dαβγδpxq, Bαβγδpxq, µpxq of (1.1) and (1.2) are highly oscillating,
non-continuous and tolerance-periodic functions in x. Applying the combined



174 B. TOMCZYK, P. SZCZERBA

asymptotic-tolerance modelling technique (cf. [5]) to lagrangian (1.1), we will
derive the averaged model equations with continuous and slowly varying coeffi-
cients depending also on a cell size.

2. Modelling procedure, equations of combined model

The combined modelling technique used to starting lagrangian (1.1) is real-
ized in two steps. The first step is based on the consistent asymptotic averaging
of lagrangian (1.1) under the consistent asymptotic decomposition of fields uα,
w, in ∆pxq � Ξ� I

(2.1)
uεαpx, z, ξ, tq � uαpx, z{ε, ξ, tq � u0αpz, ξ, tq � εrhεpx, zqUαpz, ξ, tq,
wεpx, z, ξ, tq � wpx, z{ε, ξ, tq � w0pz, ξ, tq � ε2rgpεx, zqW pz, ξ, tq,

where ε � 1{m, m � 1, 2, ..., z P ∆εpxq, ∆εpxq � x � ∆ε, ∆ε � p�ελ{2, ελ{2q
(scaled cell), x P Ω, pξ, tq P Ξ� I.
Unknown functions u0α, w

0 and Uα,W in (2.1) are assumed to be continuous
and bounded in Ω. Unknowns u0α, w

0 and Uα, W are called macrodisplacements
and fluctuation amplitudes, respectively. They are independent of ε.
By rhεpx, zq � rhpx, z{εq and rgεpx, zq � rgpx, z{εq in (2.1) are denoted periodic

approximations of highly oscillating fluctuation shape functions hp�q and gp�q in
∆pxq. The fluctuation shape functions are assumed to be known in every problem
under consideration. In this work, they have to satisfy conditions: h P Opλq,
λB1h P Opλq, g P Opλ2q, λB1g P Opλ2q, λ2B11g P Opλ2q, xµhy � xµgy � 0.
Introducing decomposition (2.1) into (1.1), under limit passage ε Ñ 0 we

obtained the averaged form of lagrangian (1.1). Then, applying the principle
of stationary action we obtain the governing equations of consistent asymptotic
model for the tolerance-periodic shells under consideration. These equations con-
sist of partial differential equations for macrodisplacements uα, w coupled with
linear algebraic equations for fluctuation amplitudes Uα, W . After eliminating
fluctuation amplitudes from the governing equations by means of

(2.2)
Uγ � �pG�1qγη�xB1hD1ηµϑy Bϑu0µ � r�1xB1hD1η11yw0

�
,

W � �E�1xB11gB11γδy Bγδw0,

where Gαγpxq � xDα1γ1pB1hq2ypxq, Epxq � xB1111pB11gq2ypxq, we arrive finally
at the asymptotic model equations expressed only in macrodisplacements uα, w

(2.3)
BβpDαβγδ

h Bδu0γ � r�1D
αβ11
h w0q � xµy aαβ:u0β � 0,BαβpBαβγδ

h Bγδw0q � r�1D
11γδ
h Bδu0γ � r�2D1111

h w0 � xµy :w0 � 0,
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where
D

αβγδ
h pxq � xDαβγδy � xDαβη1B1hypG�1qηζxB1hD1ζγδy,

Bαβγδ
g pxq � xBαβγδy � xBαβ11B11gyE�1xB11gB11γδy.

Coefficients of equations (2.3) are slowly varying in x but they are indepen-
dent of the microstructure cell size. Hence, this model is not able to describe
the length-scale effect on the overall shell dynamics and it will be referred to
as the macroscopic model. The number and form of boundary/initial conditions
for unknowns uα, w are the same as in the classical shell theory governed by
Eqs. (1.2).
In the first step of combined modelling it is assumed that within the asymp-

totic model, solutions u0α, w
0 to the problem under consideration are known.

Hence, there are also known functions u0α � u0α � hUα and w0 � w0 � gW ,
where Uα, W are given by means of (2.2).
The second step is based on the tolerance averaging of lagrangian (1.1) under

so-called superimposed decomposition.
The fundamental concepts of the tolerance approach under consideration

are those of two tolerance relations between points and real numbers determined
by tolerance parameters, slowly-varying functions, tolerance-periodic functions,
fluctuation shape functions and the averaging operation, cf. [3–5].
A continuous, bounded and differentiable function F p�q defined in Ω �r0, L1s is called slowly-varying of the R-th kind with respect to cell ∆ and

tolerance parameters δ, F P SV R
δ pΩ, ∆q, if it can be treated (together with its

derivatives up to the R-th order) as constant on an arbitrary cell. Nonnegative
integer R is assumed to be specified in every problem under consideration. An
integrable and bounded function f p�q defined in Ω � r0, L1s is called tolerance-
periodic of the R-th kind with respect to cell ∆ and tolerance parameters δ,
f P SV R

δ pΩ, ∆q, if it can be treated (together with its derivatives up to the
R-th order) as periodic on an arbitrary cell.
The averaging operator for an arbitrary function f p�q being integrable and

bounded in every cell is defined by:

(2.4) xfypxq � 1

λ

x�λ{2»
x�λ{2 rfpx, zqdz, z P ∆pxq, x P Ω,

where rf px, zq is a periodic approximation of f pxq in ∆pxq.
The tolerance modelling is based on two assumptions. The first of them is

called the tolerance averaging approximation (tolerance relations which make
it possible to neglect terms of an order of tolerance parameters δ), cf. [3–5].
The second one is termed the micro-macro decomposition. In the problem under
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consideration, we introduce the extra micro-macro decomposition superimposed
on the known solutions u0α, w0 obtained within the macroscopic model

(2.5)
ucαpx, ξ, tq � u0αpx, ξ, tq � cpxqQαpx, ξ, tq,
wbpx, ξ, tq � w0px, ξ, tq � bpxqV px, ξ, tq,

where fluctuation amplitudes Qα, V are the new slowly-varying unknowns, i.e.
Qα P SV 1

δ pΩ, ∆q, V P SV 2
δ pΩ, ∆q. Functions cpxq and bpxq are the new tolerance-

periodic, continuous and highly-oscillating fluctuation shape functions which are
assumed to be known in every problem under consideration. These functions
have to satisfy conditions: c P Opλq, λB1c P Opλq, b P Opλ2q, λB1b P Opλ2q,
λ2B11b P Opλ2q, xµcy � xµby � 0.
We substitute the right-hand sides of (2.5) into (1.1). The resulting la-

grangian is denoted by Lcb. Then, we average Lcb over cell ∆ using averaging
formula (2.4) and applying the tolerance averaging approximation. As a result
we obtain function xLcby called the tolerance averaging of starting lagrangian
(1.1) in ∆ under superimposed decomposition (2.5). Then, applying the princi-
ple of stationary action, we obtain the system of Euler-Lagrange equations for
Qα, V , which can be written in explicit form as

(2.6) xDα22δpcq2y pxqB22Qδ � xDα11δpB1cq2y pxqQδ � xµpcq2y pxqaαβ :Qβ� r�1xDα111B1cw0y pxq � xDαβγ1B1c Bβu0γy pxq,
(2.7) xB2222pbq2y pxqB2222V � r2 xB1122bB11by pxq � 4 xB1212pB1bq2y pxqsB22V� xB1111pB11bq2y pxqV � xµpbq2y pxq :V � �xBαβ11B11b Bαβw0y pxq,
Equations (2.6) and (2.7) together with the micro-macro decomposition (2.5)

constitute the superimposed microscopic model (i.e. microscopic model imposed
on the macroscopic model obtained in the first step of combined modelling).
Coefficients of the derived model equations are smooth and slowly-varying in
x and some of them depend on a cell size λ (underlined terms). The right-
hand sides of (2.6) and (2.7) are known under assumption that u0α, w0 were
determined in the first step of modelling. The basic unknowns Qα, V of the
model equations must be the slowly-varying functions in tolerance periodicity
direction. This requirement can be verified only a posteriori and it determines
the range of the physical applicability of the model. The boundary conditions
for Qα, V should be defined only on boundaries ξ � 0, ξ � L2. The form of
initial/boundary conditions are the same as in the classical shell theory governed
by Eqs. (1.2).
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It can be shown, that under assumption that fluctuation shape functions h,
g of macroscopic model coincide with those of microscopic model we can obtain
microscopic model equations, which are independent of the solutions obtained
in the framework of the macroscopic model

(2.8) xDα22δphq2y pxqB22Qδ � xDα11δpB1hq2y pxqQδ � xµphq2y pxqaαβ :Qβ � 0,

(2.9) xB2222pgq2y pxqB2222V � r2 xB1122gB11by pxq � 4 xB1212pB1gq2y pxqsB22V� xB1111pB11gq2y pxqV � xµpgq2y pxq :V � 0.

It means, that an important advantage of the combined model is that it
makes it possible to describe selected problems of the shell micro-dynamics (e.g.
the free micro-vibrations, propagation of waves related to the micro-fluctuation
amplitudes) independently of the shell macro-dynamics. Moreover, micro-dyna-
mic behaviour of the shell in the axial and circumferential directions can be
analysed independently of its micro-dynamic behaviour in the direction normal
to the shell midsurface.

3. Remarks and conclusions

The combined asymptotic-tolerance modelling procedure, proposed by Woź-
niak in [5], is applied to the known partial differential equations of Kirchhoff-
Love-type, thin, linearly elastic cylindrical shells with transversally graded ma-
crostructure and tolerance-periodic microstructure in circumferential direction.
Governing equations of the combined asymptotic-tolerance model, proposed

in this contribution, consist of macroscopic model equations (2.3) formulated by
means of the consistent asymptotic procedure which are combined with superim-
posed microscopic model equations (2.6), (2.7) derived by applying the tolerance
(non-asymptotic) modelling technique (cf. [3–5]) and under assumption that in
the framework of the macroscopic model the solution to the problem under
consideration is known.
In contrast to exact shell equations (1.2) with discontinuous, highly oscillat-

ing and tolerance periodic coefficients, the combined model equations proposed
here have smooth and slowly-varying coefficients. Moreover, some coefficients of
the superimposed microscopic model equations depend on a cell size λ. Thus, the
combined model makes it possible to analyse the length-scale effect.
It can be shown, that under special conditions imposed on the fluctuation

shape functions we can obtain microscopic model equations (2.8), (2.9), which
are independent of the solutions obtained in the framework of the macroscopic
model. It means, that an important advantage of the combined model is that
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it makes it possible to separate the macroscopic description of some special dy-
namic problems from the microscopic description of these problems.
Microscopic model equations (2.8), (2.9) also describe certain time-boundary

and space-boundary phenomena strictly related to the specific form of initial and
boundary conditions imposed on unknown fluctuation amplitudes Qα, V . That
is why, these equations are referred to as the boundary layer equations, where
the term “boundary” is related both to time and space.
Some applications of the combined model proposed here will be shown in

forthcoming papers.
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