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Recent development of Cellular Automata implementation into optimal design problems
has shown that the automaton can be an effective tool for generation of optimal topologies in
engineering applications. Nevertheless, the vast majority of results have been obtained to date
for regular lattices of cells. The aim of the present paper is therefore to extend the concept of
Cellular Automata towards irregular grid of cells related to non-regular mesh of finite elements.
Introducing irregular lattice of cells allows to reduce number of design variables without losing
accuracy of results and without excessive increase of number of elements caused by using
fine mesh for a whole structure. This paper proposes a novel Irregular Cellular Automata
formulation that can be adapted to topology optimization of real structural elements. The
effectiveness of proposed local update rule is illustrated by results of numerical generation of
optimal topologies for selected spatial engineering structures.
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1. Motivation behind present study

Appearance of efficient and versatile optimization algorithms stimulates fast
development within structural topology optimization research area. Utilizing
this progress in recent years increasing range of implementation of structural
topology optimization, especially to practical engineering problems, has been
observed. One of the most important problems to cope with is to adjust opti-
mization algorithms abilities to high requirements imposed on effectiveness and
reliability of structural analysis tools. It is well known that for real structural
elements implementation of regular finite element meshes is in many cases inad-
equate. For example complicated shapes, holes and sharp edges indicate stress
concentration, and in order to obtain reliable stress distribution the regions of
such intensity should be covered with a more fine mesh. On the other hand
to avoid an increase of computational cost one wish to use rough mesh for re-
gions, where element concentration is not necessary. As the result, a non-uniform
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density of elements represented by irregular meshes should be used in order to
achieve an accurate solution without excessive increase of number of elements.
Since structural analysis is often a part of optimization problem therefore irreg-
ular mesh problem arises also for performing design process. Although irregular
meshes have been frequently used in structural finite element analysis, imple-
mentation of unstructured design elements distribution in topology optimization
tasks is not in common use.

2. Topology optimization for minimal compliance

Topology optimization started in late eighties of 20th century [1] and since
then has become one of the most important branches of structural design.
A broad discussion on topology optimization concepts is provided by many sur-
vey papers e.g. [5, 7, 8]. Methods adapted to topology optimization represent
wide range of approaches from classical gradient based algorithms to heuristic
techniques. Among the latter ones Cellular Automata can be found, efficient
and simple approach which has been chosen in this paper as an optimization
tool. Cellular Automata technique requires local formulation of optimization
problem. It means, that considered problem has to be stated as the set of local
minimizations posted for each cell.
Many topology optimization problems regard minimization of structure com-

pliance under applied loads and supports. The formulation of such problem
within the frame of this paper is as follows:

(2.1)
minimize Updiq � d

p
iu

T
i kiui,

subject to 0 ¤ dmin ¤ di ¤ 1,

where ui and ki are the element displacement vector and stiffness matrix, re-
spectively. In this study well known SIMP approach is used [2], where elastic
modulus Ei of each element is represented as a function of design variables being
relative densities di of material Ei � d

p
iE0. In this formula p is a penalization

power usually equal 3 and E0 is the elastic modulus of a solid material. The
total volume constraint V � κV0, if present, is set globally and imposed after
each iteration. The quantity κ stands for a prescribed volume fraction and V0 is
a design domain volume.

3. Irregular cellular automata

The basic idea and first application of Cellular Automata to structural opti-
mization has been proposed and described in [6]. Classical formulation of Cellu-
lar Automata approach requires decomposition of considered domain into a uni-
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form lattice of cells, which in the most common approach, coincide with finite
element mesh. During optimization process cells interact only with their neigh-
bors according to specified local update rules, which are responsible for the
evolution of cell states, e.g. [3, 4, 9]. The implementation of non-uniform lattice
of cells of Cellular Automaton requires a reformulation of local rules provided
for regular lattices. In what follows, new local update rule dedicated to irregular
lattices of cells is proposed. The rule incorporates influence of cell sizes on de-
sign variables updating process. Assuming that a spatial structure is considered
and quantities Vi and Vik stand for volumes of central and neighboring cells,
respectively, the proposed update rule takes the following form:

(3.1) δdi � �
Vi

Vnb
p�1qα0 � Ņ

k�1

Vik

Vnb
p�1qαk

�
m � rαm,

where Vnb � Vi � N°
k�1

Vik is a neighborhood volume and m stands for a de-

sign variable admissible change. The specified values of power α0 and αk are
transferred to the update rule (3.1) according to the following relations:

(3.2) α0 � $&% 1 if U
ptq
i ¤ U�,

2 if U
ptq
i ¡ U�, αk � $&% 1 if U

ptq
ik ¤ U�,

2 if U
ptq
ik ¡ U�,

in which U ptq
i and U

ptq
ik represent values of compliance of considered cell and its

neighbors (at iteration t) and U� is a specified compliance threshold value. The
form of rule (3.1) together with relations (3.2) guarantee that �1 ¤ rα ¤ 1.
The above new proposal can be treated as generalization of the original rule

[3] extended here towards irregular three dimensional lattice of cells. It is worth
underlining that the above rule can be easily adapted also to plain structures.
The only modification to make is to replace spatial cells volumes by plane cells
areas.

4. Numerical examples

As the first example of Irregular Cellular Automata implementation to gen-
eration of minimal compliance topology a mechanical part (bell crank) presented
in Fig. 1 has been chosen. Loads are distributed along lines of nodes inside both
bottom cylindrical holes, while the inner right area of upper cylinder is sup-
ported. Cylindrical parts (blue colored regions) are treated as non-optimized.
Due to symmetry only half of the structure has been considered.
The regular (321 110 elements) and irregular (117 591 elements) meshes that

consist of tetrahedral elements/cells have been applied. Mesh refinement, in the
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Fig. 1. Mechanical part (bell crank). Initial structure.

latter case, is applied only in the region surrounding structure support, what
was indicated by stress concentration area. The numbers of elements for both
lattices are selected so as to obtain the same level of maximal equivalent stresses,
maximal displacements and values of compliance for initial structure. In what
follows resulting values are: 48.3 � 106 Pa, 0.823 � 10�4 m and 4.39 � 10�3 N �m for
regular lattice and 48.2 � 106 Pa, 0.824 � 10�4 m and 4.39 � 10�3 N �m for irregular
one, respectively.
For both cases the minimal compliance topologies have been generated and

the final results are presented in Fig. 2. The values of maximal equivalent
stress, maximal displacement and value of compliance calculated for final topo-
logies are: 44.3 � 106 Pa, 0.575 � 10�4 m and 3.22 � 10�3 N �m for regular and
40.4 � 106 Pa, 0.607 � 10�4 m and 3.32 � 10�3 N �m for irregular lattice.

Fig. 2. Final topology for regular (left) and irregular (right) lattice.
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One can notice, that in order to obtain the same level of representative
data, the number of elements/design variables for regular lattice should increase
almost three times in comparison with irregular lattice.
As the second example a truncated cone under torsion has been selected.

Distributed loads are applied across the upper edge section, which is supported
as shown in Fig. 3. All nodes of bottom edge of cylinder are fixed. The thickness
of cone wall is constant. The irregular (55192 elements) mesh has been ap-
plied, where the regions surrounding acting loads are covered with finer mesh.
The results of structural analysis are: maximal equivalent stresses 0.85 � 106 Pa,
maximal displacement 0.479 � 10�6 m and compliance 3.58 � 10�3 N �m. The reg-
ular mesh which consists of 125 056 elements has been applied next. That many
elements are required to get nearly the same results of analysis as for irregular
lattice, namely: maximal equivalent stresses 0.85 � 106 Pa, maximal displacement
0.483 � 10�6 m and compliance 3.60 � 10�3 N �m.

Fig. 3. Truncated cone. Initial structure.

The optimization has been performed and the generated final topologies are
presented in Fig. 4. The resulting data are: maximal equivalent stress 0.86 � 106 Pa
and 0.85 � 106 Pa, maximal displacement 0.342 � 10�6 m and 0.330 � 10�6 m, com-

Fig. 4. Final topology for regular (left) and irregular (right) lattice.
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pliance 2.59 � 10�3 N �m and 2.55 � 10�3 N �m for regular and irregular lattice,
respectively.
One can observe, that implementation of irregular mesh allows for a signifi-

cant reduction of a number of elements/cells, what is equivalent to a reduction
of number of design variables. That indicates smaller computing cost, since the
implementation of irregular lattice does not affect the value of compliance of
optimized structure.

5. Concluding remarks

The Irregular Cellular Automata concept presented in this paper can be ef-
ficiently adapted to topology optimization of engineering structures. It demon-
strates a significant potential of application especially to problems which cannot
be adequately represented by regular grids. While generating structural topolo-
gies it is not necessary to use a very fine mesh for whole structure therefore
number of elements and design variables can be substantially reduced. Although
number of cells is limited, because of only local mesh refinement, information
about stresses and displacements can still be correct. The use of irregular meshes
can be helpful while modeling a complicated domain geometry, accurately spec-
ify design loads or supports and finally compute structure response. What is
also worth underlining the Irregular Cellular Automata approach offers rela-
tively easy implementation into professional finite element codes.
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