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PERTURBED MOTIONS OF A ROTATING SYMMETRIC GYROSTAT

AL ISMAIL, T.S. AMER, and M.0. SHAKER (TANTA)

The aim of the present paper is to provide analytical solutions for the perturbed problem
of the behaviour of a symmetric gyrostat about a fixed point. This gyrostat is acted upon by
a gyrostatic momentum €,(s = 1,2, 3), variable restoring moment k and perturbing moments
M;(i = 1,2, 3). The moment k is introduced in view of the rotation of gyrostat under the action
of electro-magnetic field. The solutions are achieved when the third component of the gyrostatic
momentum is different from zero (€3 # 0). The averaging method is applied to investigate the
first order approximate solutions of resonant and non-resonant cases.

1. INTRODUCTION

The problem of rotatory motion of a gyrostat about a fixed point subject
to external moments is one of the important problems dealt with in theoreti-
cal mechanics. This motion is governed by a system of six nonlinear differential
equations [1]. In [2], the problem of earth’s rotation is considered, a symmetri-
cal gyrostat being used as a model. The first two components of the gyrostatic
momentum are null, and the third component is chosen as a constant. In such
a way the free polar motion has a period of 430 days (Chandler’s period). This
study has been extended and generalized in [3). The Poincaré small parameter
method is applied [4] to solve the problem of motion of a fast spinning rigid body
about a fixed point. The problem of a perturbed rotational motion of a heavy
solid with constant restoring moment close to regular precession was treated in
[5]. The case when the restoring moment is dependent on the nutation angle 6
was studied in [6, 7). The case of perturbed motions of a heavy solid close to the
Lagrangian case was considered in [8].

In this paper, the perturbed problem of rotary motion of a symmetric gyrostat
about a fixed point with gyrostatic momentum (¢3 # 0) under the influence of
the sum of constant and linear dissipative moments acting in the same direction
of the principal axes of the gyrostat, and a restoring moment k& which is the
result of the electro-magnetic field H and the point charge e acting on the axis
of symmetry Oz, has been considered. The equations of motion will be studied
under certain boundary conditions of motion which means that the vector of the
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angular velocity of the gyrostat is very close to the symmetry axis. This velocity
is very high and the values of the vectors of perturbed moments are less than
or equal to the value of the restoring moment k. The moment k& depends on the
angular velocity vector and the Euler angles 6 and 1. These conditions give a
small parameter £ which causes the perturbed motion. The averaging method [9,
10, 11] is applied to solve the system of equations of motion in the perturbed case.
A theoretical description for this technique in both the resonant and non-resonant
cases is given.

2. FORMULATION OF THE PROBLEM

Consider the rotational motion of a dynamically symmetrical gyrostat about
a fixed point O, under the influence of a gyrostatic momentum ¢3 # 0, a varia-
ble restoring moment k and perturbing moments M;(i = 1,2,3). Two systems
of coordinates are considered at the fixed point O : a fixed one OXY Z and
another, rotating one Ozyz which is fixed in the gyrostat and whose axes are
directed along the principal axes of inertia of the gyrostat at O (see Fig. 1).

Z) .
21 1

FiG. 1.

H,; = Hsinfdsinyi, Hy = Hsinf cospj, H3 = H cos6k.
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Thus, supposing that
(21) a:(;:ygzo, ZG:Z, 51252:0, 63#0, A:B#C,
the equations of motion are

Ap + (C — A)gr + qfs = ksinfcosp + My,
Ag+ (A—C)pr —pls = —ksinfsinp + My,

) Cr = M3, M; = ]VIi(p,q,r,v,/J,H, 'Z t)a (‘l = 1,2, 3)1
(2.2

0 = pCosy — gsiny,
@ =1 — (psing + gcosy) cot 0,
P = (psinp + g cos p)cosec §,

where (p,q,7) and M;,i = 1,2,3 are the projections of the angular velocity of
the body on the principal axes of inertia, and of the perturbing moment onto the
principal axes of inertia of the gyrostat passing through O. Here A, B and C are
the principal moments of inertia, g, y¢ and zg are the coordinates of the center
of mass of the body, ¢y, ¢, ¢3 are the components of the gyrostatic momentum,
and 0, ¢, 1 are the Eulerian angles such that 1 is the angle of precession, ¢ is
the angle of self-rotations and @ is the angle of nutation.

Assume that the perturbing moments are 27-periodic functions of Euler’s
angles, and that the gyrostat is acted upon by a variable restoring moment whose
maximum value is equal to k such that

(2.3) k = mge,

where m is the mass of the gyrostat, g is the acceleration due to gravity, and ¢
is the distance from the fixed point O to the center of mass of the gyrostat.

For M; =0, i =1,2,3, Eq. (2.2) corresponding to the equations of motion of
a symmetric gyrostat whose two first components of the gyrostatic momentum
are null [12], for M; =0, (i = 1,2,3),¢3 = 0, give the Lagrange-Poisson case [13],
and for ¢3 = 0, give the case of LESHCHENKO et al. [7].

Consider the following initial conditions:

24 PP+« P>k |Mi<k, i=12 = M~k

These conditions mean that the direction of the angular velocity of the gyrostat is
close to the axis of the dynamic symmetry, the angular velocity is large so that the
kinetic energy of the gyrostat is much greater than the potential energy resulting
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from the restoring moment, and two projections of the perturbing moment vector
onto the principal axes of inertia of the gyrostat are small as compared with the
restoring moment k while the third one is of the same order of magnitude as k.
Inequalities (2.4) allow us to introduce the small parameter £ and to set

p = eP, g = €Q, k=¢eK,
(2'5) ]V[" = 62]\/’[‘:(P7 Q’,r7 w’ ai(p’ t)’ l = 1’ 27

Mz = eM3(P,Q,r,v,0,¢,t).

The new variables P and @ as well as the variables and constants 7, 9, 8, ¢,
K,C,M},i = 1,2,3, are assumed to be bounded quantities of order unity as ¢
tends to zero.

The aim of this work is to investigate the asymptotic behaviour of the solu-
tions of system (2.2) for small ¢, if conditions (2.4) and (2.5) are satisfied. This
will be done by employing the averaging method which is extensively employed
in problems of dynamics of gyrostats over the time interval of order e~1. This
method was employed to investigate a variety of problems of dynamics, chiefly for
gyrostats with dynamic symmetry. The perturbed motions close to Lagrange’s
motion are investigated in different works, such as e.g. [14].

The assumptions (2.4) and (2.5) adopted in this paper, enable us to obta-
in a relatively simple averaging scheme in the general case and to investigate
thoroughly the following cases.

3. THE CASE OF VARIABLE RESTORING MOMENT

The rotational motion of a symmetrical gyrostat about a fixed point in an
electro-magnetic field of strength H (H is vertical) and a point charge e located
on the axis of symmetry is considered when the restoring moment depends on
the components of the angular velocity and further, on the angles € and ¢. Thus,
this gyrostat rotates under the force of gravity, the gyrostatic momentum and the
Lorentz force e(w A H) where w is the angular velocity vector of that gyrostat.
The resultant value of the restoring moment K, taking into account Eq. (2.3)
and (2.4), can be written in the form:

1
(3.1) K =mgl+eH? r—§r_1(psincpsin0+qcoscpsin9+rcost9)2 )

where ¢ is the distance of the position of the point charge e from a fixed point.
Using (2.5) and (3.1) in (2.2) and cancelling € on both sides of the first two
equations, one gets:
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AP+ (C — A)Qr + Qs = K sinf cos ¢ + eM7,
AQ + (A= C)Pr — Pty = —K sinfsin ¢ + e M3,

Cr = eM3,
(3.2) )
0 = e(P cosp — @sin ),

¢ =1 —¢e(Psing + Qcosp)cot b,

¥ = e(Psinp + Q cos @)cosec 6.

The last three equations of the system (3.2), with € = 0, give the zero approxi-
mation, i.e.,

(33) T =70, P = Yo, 0 = 0g, @ = 1ot + ¥o.

Here 79,0, 60 and g are constants we obtain for initial values of the variables
for t = 0. Substituting (3.3) into the first two equations of system (3.2) for £ = 0,
we obtain

P+ ng = 2gko sin g sin(rot + o),
(3.4)

Q +y2Q = zoko sin 6y cos(rot + ).
Solving the above system (3.4) we arrive at

P = acosyy + bsinvyg + Egsin g sin(rot + ),

(3.5)
Q = asin~yg — beos~yg + Fgsin 8y cos(rot + ¢q),
where
a = Fy — Egsinfgsin g,
b = —Qo + Fysinfycos ¢q,
(3.6) Eo = zgko/(W3 —13), wo =mno+ A3 #£0,

ng =(C—A)A™ry, 20 = (ng—ro)A™" + A %43,

Yo
70

Yo = Yot, ko = Ko, <L
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The last condition of (3.6) gives the following two cases:

1 . .
(1) A=B = —2—6’ gives a Lagrange’s gyrostat rapidly spinning about its
symmetry axis (zg = yg = 0).

1
(2) A=B<C,A# 5(7 leads to the initial fast spin r¢ of the body about
the minor axis of the ellipsoid of inertia.

Here Fy and (Jg are the initial values of the variables P and @ defined in
(2.5), while the variable v = ~y has the meaning of the oscillation phase of
the generating system. System (3.2) is essentially nonlinear, and therefore we
introduce an additional variable ~, defined by the equation

(3.7) Ty A0 =0.

For € = 0 we have v = 7 = yot, in accordance with (3.6).

Equations (3.3) and (3.5,6) give the general solution of the system (3.2) and
(3.7) when € = 0. Eliminating the constants with allowance for (3.3), it is possible
to rewrite equations (3.5) as

P = acosy+bsiny + Esinfsin g,
(3.8)
@ = asiny — bcosy + E'sinf cos .

Solving these equations, we obtain the results

a = Pcosvy+ @Qsiny — Esinfsin(y + ¢),
(3.9)
b = Psiny — Qcosvy + Esinfcos(y + ¢),

which define a change of variables P and @ to variables @ and b of the Van der
Pol type [15] and vice versa.

Using (3.2) and (3.7), we change the variables P,Q,r,%,0,¢,~, to the new
variables a, b, 7, ¥, 6, ¢, 7, @, 4, where

(3.10) o=+

After reduction, we obtain the following system:



PERTURBED MOTIONS OF A ROTATING SYMMETRIC GYROSTAT 277
a =eA MY cosy + M3 sinny] — 26k~ 1z E2C1r M{ sin sin o
— eEcosf(b— Esinfcosa) — ek 1 Esinfsinae H'C~ MY

1
1+ §r’2(p sinsinfd 4 gcospsinf + r cos 0)2

+ k~1Esinsin aeH¢'r(psin ¢ sin 4 qcos psin @ + r cos )
{e(psinpcosf + gcosypcosf — rsinf)(acosa + bsin a)

+ (psinfcos ¢ — gsinf#sinp)[r — e(asina — beos a + E'sinf)cot 6)
+ esinpsin(—yQ + eA"*MY) + ecos sin O(yP + A" MY)

+ eCtMJ cos 0},

(3.11) b=eA  M?siny — MY cosny] + 2ek™ 12" E2C\r MY sin 6 cos o
+ eEcosf(a+ Esinfsina) + ek~ EsinfcosaeHI'C~1 MY
14 %r—2(psin<psin9 + gcospsinf + r cos 6?)2

— k™1Esin@cos aeH¢'r ! (psinpsinf + gcos psin @ + r cos §)
{e(psinpcos@ + gcospcosd — rsinf)(acosa + bsina)
+ (psin® cosp — gsinOsinp)[r — e(asina - beos a + E'sinf)cot 0]
+ esingsinf(—yQ + A~ MY?) + ecos psin O(y P + e A1 MY)
+ eC~1 MY cos 8},
P =eCTM3,
¥ = e(asina — beosa + F'sin6)cosec 6,
0 = e(acosa + bsina),
& = CA™r + A7Y4;3 — e(asina — beos a + E sinf)cot 0,
g = (C—A)Ar+ A7,

where M denote functions obtained from M} as a result of substitution of (3.8)
to (3.11), i.e.,

(3'12) M’?(a’ b’ Ir’ ’ll)’ 0’ a’ ’Y’ t) - ]V[i*(P’ Q’ T’ Ilp’ 6’ (p’ t)’ i = 13 2) 3'
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Note that the change from the two variables P and @ to the three variables a, b
and + is made for the sake of convenience: for € = 0, the system for P and @ has
the form of a linear system, while subsitution (3.8) is non-singular for a and b.

We consider a vector — valued function X whose components are provided
with the slow variables a, b, r, 1 and 6 of system (3.11). Thus, this system can
be written in the form

X = eX(z,a,,t), a=CAlr + A Y34 €Y (z,0),
(3.13)
¥ =(C—A)A'r+ A3, z(0) =z, (0) =a0, ~(0)=0.

Here the vector-valued function X and the scalar function Y are defined by the
right-hand sides of (3.11) whose initial values can be obtained in accordance with
Egs. (3.3) to (3.7) and (3.10).

Consider both systems (3.11) or (3.13) from the standpoint of employing
the averaging method of [8, 15]. System (3.11) contains the slow variables a, b,
r, ¥, and @ and fast variables represented by the phases a,~y and time ¢. This
system is essentially nonlinear and it is extremely difficult to employ the averaging
method directly [16]. Let us assume, for the sake of simplicity that the perturbing
moments M, are independent of ¢.

Since M} (i = 1,2, 3) are 2n-periodic in ¢, it follows in accordance with (3.8)
to (3.11), that functions M} of (3.12) will be 27-periodic functions of « and .
Then system (3.13) contains two rotation phases a and v, and the corresponding
frequencies CA=!r + A=1¢3 and (C — A)A~1r + A~1¢3 are variables.

In the averaging systems (3.11) or (3.13), two cases should be distinguished:

(1) The nonresonant case, when frequencies CA~lr + A~1¢3 and (C —
A)A~'r 4+ A=1¢3 are non-commensurable.

(2) The resonant case, when these frequencies are commensurable.

A very important feature of system (3.13) is the fact that the ratio of the fre-
quencies is constant [(C—A)A™lr+A7163)/[CA " 1r+ A3 = 1— [Ar/(Cr+£3)],
and the resonant case occurs for

(3.14) (Cr+3)/Ar =i/ <2,

where i and j are relatively prime natural numbers while in the nonresonant case
(Cr + €3)/ Ar is an irrational number.

As a result of (3.14), averaging of the nonlinear system (3.13), in which X is
independent of ¢, is equivalent to averaging of a quasilinear system with constant
frequencies; this can be achieved by introducing the independent variable +. In
the nonresonant case [(Cr + €3)/Ar] # i/j, we obtain the first approximation
of the averaged system by averaging the right-hand sides of the system (3.11)
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with respect to the fast variables « and 7. As a result, we obtain the following
equations for the slow variables:

a = eA yy —eEbcos @ — 2k~ E?2 " 1rC Lsin 9,u,g + ulf,
(3.15) b=eA yy +eEacosO + 2k E2z"1rC 1sin 0ud + 1k,
T = eC'_l,ug, d) =k, 6= 0,

where
27 2n

1
p1 = m//[]\/f{] cosy + M3 sinv]dady,
00

27 2w
1
pa = m//[M{) siny — M3 cosy]dad~,
00

27 2m
ps = £y [ [ M3doa,
00
27 2m
pg = %// [3 sin adadry,
00

) 27 2
,u§=4—// MY cos ydady,
00
) 2m 2
p’f=—§//f(1dad'y,
00
) 27 2
M’z“:—g//szad%
00

Ky = —eK 'EsinfsinaeH'C~1 MY [1 + %’r”(psin(psing + gcospsind

+ rcos 9)2] + K~1Esin@sin aeH¢'r~1(psin psind + qcos psin 0 + r cos 0)
{e(psingpcos 6 4 gcospcosd — rsind)(acosa + bsina) + (psinf cos
—gsinfsinp [r —e(asina — beosa + E'sin @) cot 8] 4 £sin sin 6

(= yQ +eAIM?) + e cos psinO(yP + e A~ MY) + eC~1 M3 cos 6},
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. 1
Ky = eK 'Esinfcos aeHIC™ MY |1 + §r_2(psin<psin9 +qcospsind

+ rcos 6)2] — K 'EsinfcosaeHl'r " (psin ¢ sin @ + g cos @sin @ + r cos 6)

{e(psinpcos@ + gcospcosf — rsinf)(acosa + bsina) + (psin @ cos ¢
—gsinfsinp)[r — e(asina — beosa + E sin@)cot 8] + e sinpsin @
(—yQ + A" M?) + ecos psin(yP + A1 MY) + eC~ MJ cos 0} .

Solving the averaged system (3.15) for perturbing moments of specific form,
we can determine the motion of the gyrostat in the non-resonant case with an
error of order € on an interval of time variation of order £ 1.

The last equation in the system (3.15) can be integrated to yield § = 65 =
const.

The above system is equivalent to a two-frequency system with constant
frequencies, since both frequencies are proportional to the axial component r of
the angular velocity vector. Therefore, the applicability of the averaging method
can be substantiated in the same way as for a quasi-linear system. The principal
assertion involves the following assumption.

Assume that the function X is sufficiently smooth with respect to a and 7,
and that it satisfies a Lipschitz condition [16]. Then on the plane of permissible
values of the parameters C' and A, there exists a set L of measure zero such
that if (C, A) € L, then for the solutions of system (3.13) and (3.15) we have
the bound |z(t,e) — &(¢, )| < Re,t € [0,6e71}, in which £(e, t) is the solution of
system (3.15) averaged with respect to the phases o and v; £ = (a,b,7,%,0) and
R = const. The proof is obvious by using Gronwall’s lemma, on the basis of the
standard change of variable procedure of the averaging method [17], as well as
the arithmetic lemma used to estimate the “small denominators” [16].

System (3.13) is a single frequency system in the resonant case (3.14). Instead
of o we introduce a new slow variable, namely a lineary combination of the phases
with coefficients

(316) A=a-iv(i-4)"t  i/i#l, /i< 4,j>0.

System (3.13) gives the following form of a standard system with rotating phase
X = eX(z,ivG — )71+ \),

(3.17) A = eY(z,iv(i — j) L+ N),
4= (C—AA Ir+ A7,
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its right sides being (2|¢ — j|n)-periodic in . We set up the first approximation
system by averaging the right-hand sides of system (3.17) with respect to the
above period of variation of the argument «y. As a result, we obtain the following
system of equations for the slow variables:

a = eA u} —eEbcosd — 2K E2Z71C Yr sin 0p3® + piF,
(3.18) b =eA 'y} +eEacost+ 2KV E?ZC rsinp® + piF,

i =eClyy,  =eE, 0=0, A=—cEcosb,

where
. 2mfi—j|
pi(a, by, 0,A) = =7l / [M? cosy + M3 sin~]d,
0
e
p3(a, by, 0,)) = st / [MY siny — M2 cos v]dn,
2nli~ 3|
2m|i—j|
3(a,6,7,9,0, ) = —— M3d
#3(a7 77'7'(/)1 3 ) 27(’|i—j| 3a?,
2r|i—j|
*d 0 .
0,)) = —
3 (a: b,r,v,0, ) 27&'|’i ___Jl M3 sinydy,
27|i-j|
3°(a, b1, 9,0,)) = L M3 cos ydy
Y= el |
1 2m)i—j|
*k .
b 0,\) = ————
#1 (0,, 77'7'90, ’ ) 271_'1_]' Kld’)/,
. 2m|i—j|
*k :
0 = )
22 (0,, b’ryw; a)‘) 27r|z' _J| sz’)’

Therefore, the motion of the gyrostat in the resonant case can be established by
following the reasoning presented in [15, 17] for a heavy solid.



282 AL ISMAIL, T.S. AMER and M.O.SHAKER

4. THE CASE OF LINEAR DISSIPATIVE PERTURBED MOMENTS

We consider the perturbed motion of a gyrostat analogous to that of the
Lagrangian case with allowance for the moments acting on our gyrostat from the
external medium. We assume that the perturbing moments M;(i = 1,2, 3) have
the form of [18]

(41) M, = —elhp, My = —elhg, My = —¢€l3r; I, I3 >0,

where I; and I3 are certain constants of proportionality which depend on the
properties of the medium and the shape of the gyrostat. Also, we assume another
case of a small moment that is constant along the axis of symmetry; for this case,
the perturbed moments M;(i = 1,2, 3) take the form

(4.2) My, =M, =0, M3 = e M3 = const.

Each of the Egs. (4.1) and (4.2) has been studied separately in [6, 7] when the
restoring moment depends on the nutation angle only.

In this case, we consider the motion of the gyrostat acted upon by the sum
of the two cases together, i.e., the perturbed vector moment takes the form:

(4.3) My =—ehp, My =—chq, Ms=—clsr+eM3; I;,I3>0.
Let us write the perturbing moments using expressions (2.5) for p and gq,
(4.4) M, = —e21P, My = —€’I1Q, Mz = —elsr +eM3; I ,I3>0.

For the fundamental oscillations (non-resonant case), we introduce the new slow
variables a, b, 7,7 and 0, so that the averaged system (3.15) takes the form

(4.5) 4 = —ealyA~! —eEbcosf + %sK"le sin e H¢'r ! (psin psin 6
+ gcosysinf + 7 cos @) (psingcos  + gcos pcos O — rsiné)
— %EK~10,E cos e H?'r~}(psin ¢ sin 6 + g cos @sin 6 + r cos 0)
-(psin @ cos p — gsinfsinyp),
b=—eblA™' + eFEacosf — %EK_IG,E sin e H¢'r™} (psin psin
+ gcospsinf + rcosf)(psingcos @ + gcospcosd — rsinb)
— éeK_le cos OeHE’r_l(psingosin 0 + qcospsin® + r cos )

-(psin @ cos ¢ — gsin @sin¢y),



PERTURBED MOTIONS OF A ROTATING SYMMETRIC GYROSTAT 283

i = —eC~Y(Isr — M3),
1& = EE,
6=0.

Integrating the third equation in (4.5), we obtain
(4.6) r=(ro— I M})e B¢ 4 M3

Equation (4.5) for ¢ can be integrated using (4.6), to yield

—1a, 2
t — C To — I3 1]\/‘[5’: (8—26130_1t _ 1) .
28[3 Yy

From the last equation of (4.5), it is easy to see that the nutation angle is a
constant value, that is
(4.8) 6 = bq.

Making use of (4.6), (4.8) and the first two equations of (4.5), one obtains

@7 p=wt 2—2’“

e_dlA_lt[Pg cosm + Qg sinn — Egsinfgsin(n + ¢g)],

a =
(4.9) b= e_EIlA_lt[Po sinn — Qg cosn + Eqsin bg cos(n + ¢o)],
n = FyCI;* cos 00[65130—” —1].
As the results of substitution into expressions (3.2) and (3.7) of p and q for

P, Q, of a and b from (4.9) and of r from (4.6), we obtain

P = =147 [y cos(y — 1)) — Qosin(y —n)

+ Egsinfgsin(y —n — @o)] + Egsinfgsin g,
Q = e AT Pysin(y — ) + Qo cos(y — n)

~ Eqgsinfgcos(y —n — ¢o)| + Eosin g cos g,
(4.10)
(C - 4)

— * re\—1 _ —el3C1t i _ %
V= M [rola(M3) 1] temesC M F(C—AM5 + 3]s,

po = €Fy, go = €Qo, k=eK.

Thus we have constructed the solution of the first approximation system for the
slow variables in the case of dissipative moment (4.3). If the resonance relation



284 A.L ISMAIL, T.S. AMER and M.O. SHAKER

(3.14) is satisfied, the averaging should be performed in accordance with the
scheme (3.18). In this case, all the integrals u} from (3.18) coincide with the
corresponding integrals p; of (3.15). Therefore, the resonance in effect does not
appear and the resultant solution is suitable for describing the motion for any
ratio [(Cr + €3)/Ar] # 1.

We conclude from (4.7) and (4.8) that the nutation angle 6 remains constant
during the motion while the precession angle ¥ depends on time t. For the zero-
order approximation of €, we note that

.

(4.11) 6=0, $=0 and @=rq,

that is, the case of rotation with fast spin r¢ about the symmetry axis is then
obtained.

Figures 2 to 10 show the behaviour of the angular velocity v of the gyrostat
for different values of the point charge e and the gyrostatic momentum ¢3, with
initial values of the nutation angle 6y = 7/6,7/4, and /3.

It is obvious that the angular velocity v increases when the point charge e
increases and also when the gyrostatic momentum ¢3 increases.
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Figures 11, 12 and 13 describe the behaviour of the angular velocity of the
gyrostat when the point charge e = 200 gauss and the gyrostatic momentum
¢3 = 0, 50, and 150, with different initial values of the nutation angle, 6y = 7/6
and 7/3. It is clear that the angular velocity v increases with increasing nutation
angle 0g. We note also that the angular velocity v oscillates in a similar manner
with increases of the gyrostatic momentum /¢3.
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