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The Finite Element Method solution to the torsion problem of a linearly elastic, homoge-
neous, isotropic cylinder with a non-simply connected cross-section of variable wall thickness is
“presented. The computed displacement, warping, stress, strain and Mises invariant are shown
for several shapes of the cross-section: a rectangle, a rectangle with a crossbar, and rings with
sinusoidal boundaries of various amplitudes and periods. The computed results enable us to ana-
lyze the shape sensitivity to warping under torsion in thick-walled cylinders with complicated
cross-sectional shapes.

1. INTRODUCTION

The classical problem of torsion of a prismatic bar (cylinder) possesses in
general no analytical solution!, even when formulated within the Saint Venant
linearized theory. Among numerical methods, the finite element approach is prefe-

1) Except some regular simply connected cross-sections e.g. a circle, an ellipse, a square etc.
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rable to the finite difference one because the boundary conditions are formulated
in terms of displacement.

In everyday applications the walls of non-simply connected cylinders are usu-
ally thin enough to be sufficiently well approximated by shell elements. These are
the elements many FEM packages are equipped with. In particular, they do not
require much memory. Thus, a thin-walled solution can be obtained in a standard
way using a typical workstation or even a strong PC.

The situation is quite different when the cylinder walls are not thin enough,
or even worse — when they are of varying thickness. Then the shell elements are
useless and full 3-D elements have to be employed. The drawbacks are: a huge
memory (mainframe) requirement and a more complicated mesh defining phase.
Alternatively, a combined analytic-numeric 2-D approach that takes advantage of
the translational invariance of the cylinder and of the Saint Venant formulation
should be worked out.

2. FORMULATION OF THE PROBLEM

Let us consider a linearly elastic, homogeneous, isotropic cylinder with a non-
simply connected cross-section of variable wall thickness. The cylinder is-schema-
tically shown in Fig. 1. Its cross-section is defined by two curves I and [5.

X

FiG. 1. The geometry and notation of the cylinder considered.
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We assume that the end face Sy is fixed in the xi-z4 plane, while the end
face S is rigidly rotated about the r3-axis through an angle 7. The cylinder has
length [ and its every point is free to move in the x3-direction except one point
po € 51, which is fixed. We also assume that there are no other forces on the
lateral surface of the cylinder whereas the contact reaction forces will act on S
and 52.

2.1. 2-D formulation

The Saint Venant torsion problem can be reduced in a classical way [1] to
a 2-D Dirichlet (Neumann) problem for Poisson (Laplace) equation with the unk-
nown Prandtl stress flow (Saint Venant warping) function. The difficulty of so-
lving this problem for non-simply connected domains lies not only in the com-
plexity of their shapes. More critical is the fact that the solution values on the
boundary curves I;, 5 =1,2,... are not known a priori, but only indirectly thro-
ugh an integral relation involving the gradient of the solution, the torsion angle
and some material and geometric constants. The above observation suggests that
an iterative approach could be successful in that case.

For the sake of completeness, here we briefly present the iterative scheme the
author? has developed together with FRANCESCO dELL'ISOLA from Universita di
Roma “La Sapienza”. This scheme is further discussed in [2]. For simplicity we
restrict ourselves here to a one-hole-domain 2 with inner boundary I} and outer
boundary 7,.

Let o be a given real constant. Then for every v € R, let u, be the solution
to the following Dirichlet problem:

Auy, = -2
(2.1)
u.,}m =, u.,fPD =0.

The uy from (2.1) will be the Prandtl stress flow solution if and only if we pick
up 7y such that

(2.2) / Vi, -n=aqa
Iy

where n is the unit outer normal. Thus, solution of the torsion problem is reduced
to finding zero of the following real function J

(2.3) R97~—f—>(a—/Vu7~n)eR.
r;

*) In fact, o = —2Ar,, where A, is the area of the domain bounded by I75.
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Let us notice that each evaluation of f requires solving a Poisson equation for
a non-simply connected 2-D domain, which can be numerically expensive.

However, making use of the maximum principle for subharmonic functions,
it can be proven that f is a monotonic, linear function of 7. This fact can be
deduced also from physical arguments after recalling the well known analogies
based on the equivalence of the (Poisson) torsion equation to the membrane
displacement equation or to the capacitor electrostatic potential equation.

Since f is linear, it suffices to solve (2.1) only twice in order to find the right
pair (7, u) for a given «. This is true for a one-hole-domain. In a general 7-
hole case we arrive at the set of n linear equations for the unknown ¥1,72, .., n
Prandtl function values on the boundaries of the n holes.

The attractiveness of the technique presented here consists in reducing the
problem to two dimensions, which saves a lot of computer memory, as compared
to a straightforward 3-D approach. The bottleneck of the method is that we have
to solve numerically Poisson equation for each evaluation of the function f. Thus,
in order to make the method effective, a fast and effortless numerical procedure
should be worked out and carefully adjusted for each given class of the cylinder
cross-sections. Theory and experience show that in the case of Poisson equation,
a variant of the finite difference method should be most suitable. Also the finite
element method could be used to solve (2.1), provided suitable elements, e.g.,
membrane elements were at our disposal. In any case, elaborating such a proce-
dure is a substantial numerical task and the results of its implementation will be
presented elsewere.

2.2. 8-D formulation

In a straightforward 3-D formulation we build up the FEM solution from
8-nodal 3-D linearly elastic elements. Because of employing Gaussian interpola-
tion it suffices to take only two layers along the wall thickness. Nevertheless, the
total number of the elements used is quite large since 1) the meshed cylinder sho-
uld be high enough for the end faces perturbations to become negligible, 2) the
shape of each element should be kept not too different from a cube.

The boundary conditions in our torsion problem can be written in terms of
the displacement vector function u(xy,r2, x3) = |uy, ug,us] as follows:

on Si: on Sy
uy(xry,x2,0) =0, uy(xy, 22,l) = =T T2,
(2.4) up(xy, x2,0) = 0, us(xy, xe,l) = 7Ty,

us(po) =0,
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in order that the Saint-Venant’s solution [3] holds along the whole cylinder. The
conditions in the above form can be directly applied to the appropriate nodes of
the mesh, provided that the nodal coordinates x1, T9 are explicitly known.

Within the ABAQUS package that we used for our 3-D computation it was
impossible to refer a priori to the coordinates of the constructed nodes neither by
the ABAQUS internal language for preparing job-input files, nor by the supplied
external preprocessor, nor even using allowable low level external FORTRAN
procedures>.

3. GENERATION OF THE MESH

Taking into account that the ABAQUS tanguage for preparing job-input
files appeared to be quite primitive and oldfashioned; also in many other aspects,
we decided to employ Mathematica computer system to prepare the complete
job-input files for ABAQUS from the scratch. The advantage is that by writing
a short and simple Mathematica package we automated the tedious process of
defining mesh and displacement boundary conditions for complicated, but easi-
ly modifiable geometries. The package is written in such a way that the crucial
geometrical and material parameters of the structure under torsion are the pac-
kage input variables. To illustrate our idea we present below the fragment of the
Mathematica procedure that generates the ABAQUS job-input files for cylindri-
cal rings with sinusoidal boundaries of various amplitudes and periods.

(* 12 hunch ring with the ripple factor: 0.5 )
t1205 := meshtor[ 10, 0.5, 12, 12, 20, 0.100, 0.05, 0.06 ]

meshtor::usage = "meshtor[ tau, ripple, n, m, nsli, h, rin, rout ], where:
tau - torsion angle [deg],
ripple - the hunch depth factor (should be: 0 <= ripple < 1),
n - number of hunches,
m - number of nodes per 1 hunch,
nsli - number of slices,
h - total height [m],
rin - inner radius [m],
rout - outer radius [m]
",
meshtor{ tau_, ripple_, n_, m_, nsli_, h_, rin_, rout_ ] := Module[
{ amp,tors,step, j,jnod,gl,g2,g3,rob
,inner={},outer={},middle={}
}’
amp = ripple*(rout-rin);
step = 2 Pi n m;
tors = Pi tau 180;

%) Because the nodal coordinate variables were not included in the appropriate EXTERNAL
declarations of the user supplied procedures.
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fi = 0;

While[ N[ £fi ] <= N[ 2 Pi ],
AppendTo[ inner, { rin¥Cos[fil, rin*Sin[fi] } 1;
rob = rout + amp*Cos[ n*fi ];
AppendTo[ outer, { rob*Cos[fi], rob*Sin[fil } 1;
rob = (rin + rob) 2;
AppendTo[ middle, { rob*Cos[fil, rob*Sin[fi] } 1;
fi += step;

jnod = Length{inner];

gl = ListPlot[ inner, AspectRatio->Automatic, DisplayFunction->Identityl;

= ListPlot[ middle, AspectRatio->Automatic, DisplayFunction->Identityl;
3 = ListPlot[ outer, AspectRatio->Automatic, DisplayFunction->Identityl;

g = Show[ {gl,g2,g3}, DisplayFunction -> $DisplayFunction];

0| g
N
I

Print ["+HEADING"];

Print[" BIKE_TORPEDO____",n,"_HUNCHES____RIPPLE_FACTOR_",ripplel;
Print ["** "];

Print["** output directives "1;

Print ["*x "]

Print ["*RESTART, WRITE, FREQUENCY=1 "];

Print ["** "l

Print ["#* "l;

Print["#* generation of nodes "l;

Print ["#*x* "];

Print["** bottom outer boundary "1

Print ["** "l

Print["*NODE, NSET=N_BOUTER "1

Dol

Print[" *,11000+j,", ",outer([j,1]1] N,", ",outer[[j,2]11 N,", 0" I;

,{j,1,jnod} 1;

Thus, using Mathematica we can readily produce complete ABAQUS job-
-input files for “smoothly” modified geometry and therefore effectively, investigate
the shape sensitivity of a structure under torsion.

4. NUMERICAL RESULTS

We performed computations for the following three types of the cylinder cross-
-section: a rectangle, the same rectangle but with a crossbar (two-hole-domain),
and rings with sinusoidal boundaries of various amplitudes and periods. All the
results are presented in tabulated and in graphical form according to the same
scheme described below.

For each case, the ABAQUS job-input file was prepared using Mathematica.
The node coordinates with the ABAQUS computed values of the displacement,
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strain, stress and von Mises invariant were tabulated and the related Post Script
graphic was generated. The graphical representation of the results includes:

e a general 3-D view of the cylinder displacement under torsion,

e the 3-D contour map of the von Mises invariant values over the whole
cylinder,

o the detailed 3-D plots of the middle slice of the cylinder (the central layer
of the elements) presenting: the warping of the middle slice, the torsion of the
slice, the 2-D contour maps of the two dominant® stress tensor components o3,
o023 and the contour maps of the dominant strain tensor component ¢;3 and of
the von Mises invariant

over the slice cross-section.

In all cases the cylinders are made of steel with Young’s modulus 2.1-10% kg/
mm? and Poisson’s ratio 0.3, and the torsion angle is 7 = 10 deg.

The numerical examples presented below serve merely as the canonical ones
with respect to real industrial applications. They are useful for validating our
3-D formulation of the torsion problem and for testing the performance and
accuracy of our numerical implementation, as well as its applicability to industrial
problems.

4.1. The rectangle

The dimensions of the cylinder are 15 x 10 X 12.5¢cm (z; X 72 X r3) and the
wall thickness is 0.5cm. The numbers of elements taken are 2 - (45 x 30 x 25),
respectively. The 3-D view of the cylinder displacement under torsion and the 3-
D contour map of the von Mises invariant are shown in Figs. 2 a, b, respectively.
The warping and the torsion of the middle slice of the cylinder are presented in
Fig. 5 a.

4.2. The rectangle with a crossbar

The cylinder has the same dimensions and the wall thickness as described
in Subsec. 4.1. However, an extra crossbar is added. It is placed along the
zo—coordinate at 1/3 of the zy~length of the cylinder. The 3-D views for that
case are presented in Fig. 3, while the warping and the torsion of the central
layer are shown in Fig. 5 b.

4) Theoretically, these are the only nonzero components; the dominance is of order of the
ABAQUS accuracy of computations — we can see that six digits are significant.
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The influence of the crossbar can be estimated from comparing the respective
figures. The differences in warping are worth noticing, as well as the changes in
the distribution of the von Mises invariant g values over the cylinder walls. The
range of q is 4.72-10% - 1.94- 107 for the empty cylinder and 1.56-10° - 2.12- 107
for the cylinder with the crossbar. The green color in Fig. 2 b corresponds to
q = 1.15-107. On the other hand, in the Fig. 3 b, the green color corresponds to
g =19.9-10° and the yellow to ¢ = 1.4 - 107.

As we can see, the redistribution of equivalent stress over more complica-
ted non-simply connected structures obtained by introducing crossbars, can be
successfully analyzed within our formulation of the torsion problem.

4.3. The ring with varying thickness

We have analyzed the shape sensitivity to warping of ringed cylinders by
changing the period and the amplitude of a sinusoidal outer boundary of the
cylinder cross-section. Starting from a perfectly round ring with the inner ra-
dius 5cm and with the constant thickness equal to 1cm, we have changed the
number of humps on the outer wall from 1 to 48 and the height of the humps®
in the range 0 — 9mm. The number of elements taken are 2 - (20 x 120 + 192).

In Fig. 4 and Fig. 5 ¢ we show the results for the cylinder with 3 humps
and the ripple factor equal to 0.5. It is worth noticing that in the right plot of
Fig. 5 c, the inner radius of the cylinder increases under torsion. This is a simple
consequence of the volume conservation law and it confirms the validity of the
computations performed.

As one could expect, the Mises invariant ¢ attains its maximum at the thin-
nest parts of the cylinder wall, while the minimum of g is reached at the thic-
kest parts. In Fig. 6 we show the computed maximal and minimal values of the
Mises invariant versus the ripple factor for the cylinder with fixed number of
humps = 12. In Fig. 7 the ripple factor is fixed and equals 0.5 and the extremal
g-values are ploted versus the number of humps. Again, the computed curves look
reasonably and validate our numerical formulation. For example, the maximum
of q increases® for larger ripple factor, since the minimal wall thickness decreases.
Similarly, it is naturally expected that extremal g-values are almost constant for a
fixed ripple factor and they change substantially only when a hump (or humps) of
fixed height just arrives on the lateral surface of a homogeneous round cylinder”.

%) The maximal thickness of the cylinder wall is kept constant; we define the ripple factor
as the ratio of the hump height to the wall thickness, so it is within 0.0 <~ 0.9 in our case.

) Up to infinity as ripple factor tends to 1.

7) When the number of humps is around 50, the cylinder becomes a sort of toothed wheel.
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F1G. 2. Cross-section: the rectangle; a) displacement under torsion and b) the 3-D contour map
of the Mises invariant.
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Fic. 3. Cross-section: the rectangle with a crossbar; a) displacement under torsion and
b) the 3-D contour map of the Mises invariant.
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Fi1G. 4. Cross-section: the ring with varying thickness (3 humps, ripple factor = 0.5);
a) displacement under torsion and b) the 3-D contour map of the Mises invariant.
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Fi1G. 5. Warping and torsion of the cylinder central layer with the cross-section: a) the rectangle,
b) the rectangle with a crossbar, ¢) the ring with varying thickness (3 humps, ripple factor = 0.5).
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F1c. 6. The computed maximal and minimal values of q versus the ripple factor for the cylinder
with fixed number of humps = 12.
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Fic. 7. The computed maximal and minimal values of ¢ versus the number of humps for the
cylinder with fixed ripple factor = 0.5.
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4.4. Validation of the results

Our numerical formulation can be further validated by comparing our compu-
tation to the case when the analytical solution is known. Fortunately, there exists
one for a cylinder with a finite, but not small, wall thickness. Let us consider the
hollow circular shaft of inner radius a and outer radius b, twisted by the angle
per unit length of the bar. It is easy to guess the Prandtl torsion function u in
this case:

(4.1) u=c(z? +22 - b%).

1
With the constant ¢ = _iﬁG’ G being Lamé’s coefficient, the function u
from (4.1) satisfies the Poisson equation Au = —2GB in the cross-section of

1
the bar and the conditions u|;, =0, u|[p = §5G(b2 — a?) on its boundaries I,

and I',. Consequently, using u, we can express (cf. {1}) the nonvanishing stress
components 13, 093 as:

ou Oou
4.2 o013 = — = —f[Gxa, 093 = ——— = BGx;.
(4.2) 18= g BGzo 23 B BGzy
Furthermore, we can relate the warping function w to the Prandtl function u by
the equations

(4.3) ow _ 1 Ou ow 1 v
' oz, BG 9zs Y oz BG 0z, OV

From (4.2) and (4.3) we see that w = 0 and there is no warping in this case.

a) b) )

FIG. 8. Cross-section: the ring of constant thickness; a) 013 stress component, a) ga3 stress
component, ¢) null warping.



TORSION OF A SAINT-VENANT CYLINDER... 91

Our numerical results for the hollow circular shaft are in perfect agreement
with the above analytical conclusions: we obtained purely (within six digits ac-
curacy) zo dependence of the o3 stress component, entirely z; dependence of
093 and no warping in the z3 direction. These facts are shown in Fig. 8 a, b, ¢,
respectively.

5. CONCLUSION

The shape sensitivity to warping under torsion in thick-walled cylinders with
complicated, multi-connected cross-sections can be effectively investigated for
industrial applications using the proposed 3D-FEM approach with the essential
help of the Mathematica computer system for automated preparation from the
scratch the complete FEM job-input files.
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