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The present contribution is based on the results of the mathematical the-
ory of homogenization. First, the effective anisotropy caused by the periodic
distribution of thin rectangular voids is calculated by the FEM. Next, for a spe-
cific microstructure, the influence of anisotropy on effective elastic behaviour is
studied. We analyze the dependence of effective moduli on such geometrical pa-
rameters like length of the crack, or angles between two directions perpendicular
to differently oriented families of uniformly oriented cracks. The model is ap-
plied to finding the distribution of microcracks which minimizes (or maximizes)
the stresses in a material element. The proposed model is a hybrid model which
combines the periodic homogenization with random homogenization, cf. [1, 4]
To perform numerical calculations and control the geometrical parameters, the
necessary idealization was assumed.

2. ANISOTROPY CAUSED BY MICROCRACKS DISTRIBUTION

The first step is to calculate the effective elastic behaviour of a fissured elastic
matrix. To perform it, we solve the problem of periodic homogenization. In
this case, the effective elasticity tensor Cihjkl is calculated from the following
formula:
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Y - periodic functions xp are the solution to the following local problem
on.Ys
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The elementary unit periodic cell Y, |Y| = 1 is depicted in Fig. 1.

The parameter a denotes the length of a single crack. The crack is modeled
by a “thin” rectangular void in which the ratio between sides is ca. 0.01. The
solution to Eq. (2.3) is obtained by FEM and the anisotropic effective elastic-
ity tensor is calculated from Eq. (2.1). This tensor exhibits anisotropy due to
the directionality of cracks distribution. We observe that if a approaches 1, the
technical constants calculated from Hooke’s tensor behave in agreement with the
fact that the material is cut along the lines parallel to the 0z-axis, cf. [2].



INFLUENCE OF ANISOTROPY INDUCED BY...
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Fic. 1. Elementary unit cell.

Y1

D matrix
D cavity

a 0.8 0.9 0.95 0.99 0.9999
E, 0.724 | 0.724 | 0.723 | 0.723 0.723
E, 0.706 0.684 | 0.662 | 0.585 0.032
Es 0.724 | 0.724 | 0.723 | 0.723 0.723
20 0.449 | 0.435 | 0.412 | 0.373 0.020
V21 0.460 | 0.460 | 0.460 | 0.460 0.460
Vi3 0.460 | 0.460 | 0.460 | 0.460 0.460
V31 0.460 | 0.460 | 0.460 | 0.460 0.460
V93 0.460 | 0.460 | 0.460 | 0.460 0.460
V39 0.449 | 0.435 | 0.421 0.373 0.020
G2 | 0.239 | 0.228 | 0.209 | 0.124 0.002
Gi3 0.248 | 0.248 | 0.248 | 0.248 0.247
Ga3 0.230 | 0.220 | 0.205} *0.125 0.002
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3. A RANDOM STRUCTURE WITH FIXED DIRECTION. LAMINATION FORMULAE

The fact that random structure of a two-phase composite can be approached
by multiple rank coated lamination process is examined in [1, 4]. In general, the
number of parameters which should be determined is infinite. The simplest case
where randomness appears is a laminate of rank one. In this case, the direction
of lamination is fixed and the probabilities of finding the phases in this direction






























