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OF COMPOSITE STRUCTURES

P. Kedziora

Institute of Machine Design
Cracow University of Technology

Al. Jana Pawla II 37, 31-864 Krakoéw, Poland

A fuzzy-set approach conjugated with finite element analysis is used to investigate the
influence of the variability (random field) of geometric and material properties on buckling
loads understood as one of possible failure modes for composite structures. The uncertainty
(the scatter) of buckling loads is created by the prescribed variations of thickness and in Young’s
and Kirchhoff’s moduli. The a-cut and vertex methods are utilized to study the sensitivity
of buckling loads to fuzzy parameters variations. Numerical results are presented for axially
compressed angle ply-plates and shallow cylindrical panels.

1. INTRODUCTION

The use of fibre-reinforced composite materials in modern engineering struc-
tural design has become a common practice. However, since more design variables
typically exist when composite materials are employed and the manufacturing
processes for producing composites are more complex, more variability can exist
in a design produced with composites compared to conventional materials. Thus,
the variability of properties that occurs in composite structures leads directly to
a random field of variables describing constructions. A scatter of properties has
a different origin, but, in general, it may be divided and classified in the following
manner: (1) geometric properties (imperfections), (2) physical and mechanical
properties, (3) environmental effects (exploitation), (4) technology (understood
in the sense of geometric dimensions but as an origin of local defects, a scatter
of fibre directions etc.). Therefore, there is a fundamental question: how many
and which of the above factors can (or should) be incorporated in the design
process and how can we manage to take into account the existing variability of
parameters.

Although the majority of available references in literature discussing the de-
sign problems of composite structures is devoted to the analysis conducted in
a pure deterministic way, the variety of methods exists that have been adopted in
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order to take into considerations random field of parameters describing the com-
posites. Among them one can distinguish the following approaches: (a) statistical
methods: starting from the BOLOTIN method [1], the Monte-Carlo simulation —
ELISHAKOFF [2] or using the statistical distributions (see e.g. YANG et al. [3]
or LEE et al. [4]), (b) probabilistic finite element methods that intend to incor-
porate micromechanics in the FE (linear or non-linear) analysis — see e.g. Refs.
[5-8], (c) stochastic description — see e.g. JUSZANOV, BOGDANOVITCH |9, 10] or
(d) non-stochastic methods — a fuzzy set approach. The fuzzy set approach has
been used mainly in various optimisation problems solved for composite struc-
tures — see ADALI [11] or KIM et al. [12]. NOOR et al. [13] have utilized the fuzzy
set approach to the FE analysis of failure problems. MUC et al. [14] explained a
theoretical background of the fuzzy set theory and demonstrated the application
of the fuzzy set approach in various mechanical problems (the use of the fuzzy set
approach in engineering, mechanics and mechanics of composites) such as, e.g.
definitions of material properties for unidirectional and textile composites (ap-
plication of micromechanical models), damage analysis of the limit load carrying
capacity of composite structures including buckling response, the first-ply-failure
(FPF), fatigue problems and stacking sequence (topology) optimization of com-
posite structures in a fuzzy environment.

The aim of the present work is an attempt to analyse the influence of scat-
ter of the material and mechanical properties on the values of buckling loads
and on the optimal fibre orientations for angle-ply laminates. In the first part
of the work we discuss briefly the fundamental problems connected with the
fuzzy set analysis. Then, we use these methods in the numerical (FE) or the-
oretical analysis of buckling problems for composite, multilayered compressed
plates and cylindrical panels. The presented examples illustrate the advantages
and disadvantages of the proposed fuzzy set approach to the design problems
of composite structures. The proposed methodology can be easily extended to
the FE examination of other than buckling failure modes, e.g. the first- and the
last-ply failure, delaminations etc.

2. FOUNDATIONS OF THE FUZZY SET THEORY

This section deals with foundations of the fuzzy set theory. First of all we
present the notation of a fuzzy set and discuss forms of their possible represen-
tations. Then, we discuss some aspect of their fuzzy sets.

If we consider a certain space, for instance the set N of all integers, we gen-
erally describe, data by defining subsets of the given space. In the space N the
feature “less than 10” is characterized by the set:

(2.1) A=1{1,2,3,4,56,7,8,9} C N.
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Another representation of the data “integer less than 10” is the definition of
the characteristic function IT4 in the following way:

II4:N- {0,1}

1, if less than 10
Lo = 0, otherwise

(2.2)

that yields the value 1 for each element of the space N that belongs to the set
A and the value 0 for each element that does not. The above representation
is commonly called a crisp set. However, this concept can not be used directly
since we intend to characterise the typical property for composite materials as
e.g.: the failure of CFRP under tension occurs as the tensile strain ¢, is equal
to the ultimate value 0.015. The characteristic function of this set is depicted
in Fig. la. A problem arises if the linguistic term “the failure under tension”
has to be described. It is well known that from the micromechanical point of
view, the failure starts from microcracks in the matrix for the strain values
much lower than 0.015. In addition, the value 0.015 is usually an average value
characterizing rather a scatter of random values of macrocracks appearing at
the strain level 0.015. Therefore, for some specimens one can observe the final
(macroscale) failure as e, is equal to 0.0159 or to 0.0141. A possible solution to
this problem is generalization of the definition of the characteristic function in
a way that it should yield values from the interval [0, 1] and not just the two
values of the set {0, 1}. This leads to the notion of a fuzzy set.

a) b)
pix) nix)
1 — 1
0 T L
0,015 0 | ,
X=gy 0.005 002 X=€
X
F1G. 1. The representation of the term “the failure occurs ...” a) a crisp set, b) a fuzzy set.

A fuzzy set p of X is a function that maps the space X onto the unit inter-
val, i.e.:

(2.3) p:X —[0,1].

The value p(z) denotes the membership function of z in the fuzzy set p.
Figure 1b shows (subjectively defined) a membership function of the fuzzy set
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 describing the linguistic meaning of the term “the failure under tension”. The
use of fuzzy sets to formally represent vague data is often done in an intuitive
way because in many applications, there is no model that provides a clear in-
terpretation of the membership degrees, although we want or we try to base on
various experimental data.

Of course, there are different possibilities to determine and represent the
membership functions characterizing a fuzzy set. If the subspace X contains
only a finite number of elements, a fuzzy set 1 of X will be defined by specifying
for each element = € X its membership degree pu(z). If the number of elements
is very large or a continuum is chosen for X, then p(z) can be better defined by
a function that can use parameters which are adapted to the actual modelling
problem. For instance, if we want to represent the term “Young’s modulus is
equal to 200 [GPaJ” in the sense of a fuzzy set having a finite amount of the
experimental data, we can select one of different representations given in Fig. 2
and Ref. [14].

nk)
1 1

0= + }
150 200 250
x = E; [GPa]

F1G. 2. Various fuzzy representations of the term “Young’s modulus is equal to 200 [GPa)”.

It should be pointed out that there is no unique fuzzy set representation by
a membership function. Taking into account the possible applicability of fuzzy
set concept, the so-called horizontal representation of fuzzy sets is introduced
by using their a-cuts instead of the membership functions u(z) which are called
vertical representation.

Let 4 € F(z) and « € |0, 1]. The set

(2.4) (W = {z € X|u(z) > a}
is called the a-cuts of pu.
Let 41 be the triangular function on R given in Fig. 3. The a-cuts of x are in
this case defined as follows:
@a+a-(m—a)b—a-(b-m)] if 0<a<l1

(25) [:u']a = R if e Th
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FiG. 3. Definition of a-cuts.

In the present study it is assumed that the membership functions of the fuzzy
parameters are triangular as shown schematically in Fig. 3 (see also Eq. (2.5))
where:

a+b
P

(2.6) ™% : a=09-m, o= "1T.1Mm

and m is an average value for each of the fuzzy parameters, for instance it can
be evaluated from the experimental data. As it may be seen from the relation

(2.6), the variability (fuzziness) is taken to be equal to +10%, which falls within
the typical ranges of scatter in experimental data for static tests.

3. THE VERTEX METHOD — COMPUTATIONAL ANALYSIS

Let us introduce N fuzzy parameters describing the material or geometric
parameters of a composite structure considered. Their membership functions
are discretised using several a-cuts — Eq. (2.4). Considering the left and right-
end points of the a-cuts intervals [u], (see Fig. 3) for all fuzzy parameters, one
can find the total number of the combinations N¢jo per a-cut in the following
form:

(3.1)

2N for V< a<l,
Nc/a_ 1 “for a=1.

The output response denoted by p is an unknown function of the input fuzzy
parameters z; (¢=1, 2, ... N),'so that:

(3.2) p= f(z1,...,2N).
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Using the a-cut concept combined with the binary representation (3.1) of the

fuzzy parameters x; (i = 1, 2, ..., N), the relation (3.2) can be rewritten in
the abbreviated form:
(33) P = f(Cayj), j = 1,2,...,Nc/a.

Since the output response p as a function of fuzzy parameters is a fuzzy set,
the corresponding interval in p is obtained from the relation [15]:

(34) [pé’pg] = [n/;lljn f(C)\,j)a n}\ajx f(c)\,j)]; A > «, ] == 1, 2’ ceey Nc/on

As it may be seen, the relation (3.4) allows to obtain a scatter of the out-
put parameters an then to build the appropriate probability distributions and
reliability functions by sweep of a-cut at different possibility levels.

In order to conduct the computations and to evaluate the upper and lower
bounds of the output response (3.4), it is necessary to determine the deterministic
method of definition of the function f given in Eq. (3.2). It can be defined in
a pure analytical way or alternatively — in a pure numerical way. As it may be
noticed, the vertex method resembles here the Monte Carlo simulation method
where the output response has also the deterministic, unique form.

The function f existing in Eq. (3.2) may describe an arbitrary failure criterion
for composites, e.g. buckling, delamination, the first-ply-failure etc., whereas
symbol p denotes the corresponding value of the failure load.

4. RESULTS

4.1. The influence of variations of fibre orientations

The following analysis deals with the evaluation of variations of fibre
orientations. Figure 4 shows a compressed composite rectangular plate. Com-
pressive loads are given by forces P, and P,. The parameter of buckling ),
has been derived by WHITNEY and LEISSA [16], Ay is defined in the following
way:

(mp/ - a)?
4.1 Y- - T
1 TP (Lhk R
where:
Ts33= D11 +2- (D12 +2- Des) - B, + Doz - B,
(4.2) :
Bm = e k Py

mp - b’ ik
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a,b — dimensions of sides of the plate — Fig. 4, ny, mp — number of half-wave of
buckling, D11, D2, D22, Dg¢ — bending stiffnesses for multilayered composite

structures.
/}‘UPY

a

F1G. 4. Geometry of a compressed multilayered rectangular plate.

In this analysis, the value of n; is equal to 1 and the value of my is taken as
1, 2 or 3. Using the relationship (4.1), Muc [17] determined the optimal value
of fibre orientations as follows:

o 1) B4_1
(4.3) 0 =0%:70or ~0-=90% ior COS(2.0)=('0.——6-,8,2:+,3§”+1
where:
T
Uy N
4.4 — i
) 11l 4-Us 1+E?-—2-1/12-&—4-(1——1/12-1/21)-@,
E; E, FEq
1 1
(4.5) U2=§'(Q11—Q22), U3=-8-'(Q11+Q22—2'Q12—4-Q66),
E vig - B
Qu=i——,  Qu=oi
(4.6) =i 2.:V9] ~ Vi3 Vo1
E
Q22=1 - ! Qes = G12.
— V12 * Vo1

If parameter f,, is located in this interval

(4.7)

—6+ /36 +4- (02 —1) <p

6+ /36 +4-(p2—1)

2-(¢—1)

bl ey

21
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then optimal fibre orientations is obtained from the bimodal condition in the
following form

—U2~a2:l:\/U22-a%—8-U3-a1-a1

(4.8) cos(2-0) = N T AP
where:
(49) a1 =dy — 6 dg +ds, az = dy — ds,
: ay= (i Us) - (d1 +ds) + 2+ (U1 — 3+ Us) “da,
d1 = Ym+1 — Yms d2 = Ym+1* ﬂgﬂq L O ﬂyzm
(4.10) o
d3 = Ym+1 - :8;171,4-1 g 1 ﬂﬁl, iy = l-i-_k—BTm

To demonstrate and compare the results two composite materials, are consid-
ered herein, presented in Table 1. Three parameters have been considered as
fuzzy variables: the Young moduli E;, E5 and the Kirchhoff modulus Gio. The
calculations have been carried out for mechanical properties taken from Table 1
(a crisp set, i.e. @ = 1) and fuzziness properties for a = 0.5.

Table 1. Mechanical properties of composite materials.

Material | Fibre Resin E, |GPa] | E; [GPa] | G12 [GPa] | vi2 7
1 Glass E | Polyester 28 8.2 2.8 0.29 | 0.9649
2 Boron Epoxy 204 18.5 5.59 0.23 | 0.9675

Figures 5 and 6 demonstrate the influence of fuzziness in composite me-
chanical properties on the scatter of optimal fibre orientations. The solid line
represents the results of deterministic approach corresponding to @ = 1 whereas
broken lines present the scatter of the optimal results for & = 0.5. As it may be
seen, the mechanical properties of composites affect the magnitude of scatter of
fibre orientations as well as the scatter of buckling loads — see Table 2. However,
it is worth to note that the scatter of buckling loads is almost identical for dif-
ferent types of material, although buckling loads are not linearly dependent on
Young’s modulus E; - see Egs. (4.1) and (4.2).

Table 2. The fuzziness of fibre orientations 6.

Material Al =0max = Omin [°] Buckling loads
Half-wave of buckling Bimodal condition AXp w
A)\b max det .

13.64 10.01 23.7 9.78%

2 5.94 0.98 16.6 9.91%
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Fic. 5. Optimal fibre orientations 6 for material 1, & = 1.0 (solid line) and o = 0.5
(broken line).
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Fic. 6. Optimal fibre orientations # for material 2, @ = 1.0 (solid line) and a = 0.5
(broken line).

This effect is also presented in Table 3 since for o = 0.5 the fuzziness in
values of optimal fibre orientations is caused by different combinations of me-
chanical factors. In our opinion, the results are very sensitive to the variations of
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Egs. (4.3) and (4.4). If the value of Young’s modulus is not much higher than E,
(the material 1), the scatter of fibre orientations is very high. In the second case

(the material 2) E; is much higher than FEj, the scatter of fibre orientations
is low.

Table 3. Influence fuzziness of F;, F2 and (G2 on fibre orientations 6 for a = 0.5.

Fibre orientations 6 for

Material (0°,45°] [45°,90°] Pmin | Pmax | Abmin | Abmax
emin emax emin Gmax
1 LLR | LRL | LRL | LLR /| LRL | LLR LLL RRR
2 RLR | LRL | LRL | RLR | LRL || RLR

Here e.g. LLR denotes E11, E21, G12R-

4.2. The effects of scatter of mechanical properties

To demonstrate the computational procedure discussed in the previous sec-
tion, numerical studies are performed on two multilayered thin composite struc-
tures: a compressed square plate and a compressed shallow cylindrical panel. The
aim of the study is to find the buckling load (the response value p - see Egs. (3.2)
or (3.3)) for structures. The numerical FE analysis is carried out in the elastic
geometrically linear range only, with the use of the four nodded quadrilateral
shell elements (NKTP 32) employing the first order transverse shear deforma-
tion plate/shell theory. Buckling loads have been evaluated with the help of the
FE package NISA II [18].

The geometric and material characteristics are given below and shown in
Fig. 7.

E, =280 GPa, E,=12GPa, Gy =7 GPa,
(4.11) sz = 0.6 N Gzy, Gyz = Gzy, Uzy == 0-28,
t/a=01, t/L=01, L/R=01, f/L=0.1,

where t is the plate/shell thickness, & is the plate length, L is the cylinder length,
whereas f and R denote the shallowness parameter and the radius of a cylinder,
respectively.

Four parameters have been considered as fuzzy variables (i.e. N = 4): the
total thickness ¢, the Young moduli E;, Ey and the Kirchhoff modulus Gz, .
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F1c. 7. Geometry of: a) a square compressed plate, b) a compressed shallow cylindrical panel.

The distributions of buckling pressures versus the angle of fibre orientations
at @ = 0, 0.5 and 1.0 are plotted in Fig. 8 for square plates and in Fig. 9 for
cylindrical panels. The upper and lower bounds (o = 0 and 0.5) of the curves
drawn for a = 1.0 are not symmetric as it is demonstrated in Table 4. The
interval (3.4) is strongly dependent on the fibre orientations as well as on the
wave-number in buckling. This is especially visible for cylindrical panels where
the unsymmetry in the left (L) and right (R) bounds is even much more striking
than for the plates. The buckling loads are presented in the dimensionless form
and related to the value:

(4.12) P Eth/’Yza

where parameter v: is equal to a for square plates, is equal to the length L of
cylindrical panels.

Pdp :

4 H

——a=0

max
=8~ a, = Omip

—— o= 0.57ax
—— o =0.5n

=oa=1

|
|
2
|
|
oL ygabige . 4 v a0t orsuigh

Fibre orientations - 0

Fic. 8. Distributions of buckling loads for compressed angle ply-plates.
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F1G. 9. Variations of buckling pressures with fibre orientations for compressed shallow
cylindrical shells.

Table 4. Buckling pressures for compressed shallow cylindrical shells for a = 0°
and 6 = 75°

Combination LLLL | LLLR | LLRL | LLRR | LRLL | LRLR | LRRL | LRRR
(t, Bz, Ey,Gqy)
Dimensional

buckling load | 429.300| 459.344| 486.979| 524.699| 429.344| 459.352| 487.027| 524.700
[MPa]

Combination | RLLL | RLLR | RLRL | RLRR | RRLL | RRLR | RRRL | RRRR
(t, Bz, Ey,Gzy)
Dimensional

buckling load | 659.152| 712.814| 738.685( 805.717| 659.134| 712.735| 738.675| 805.630
[MPa]

where e.g. LLLL - is used to denote t1,, Ez1,, EyL, GeyL-

5. CONCLUDING REMARKS

A fuzzy set approach is introduced in conjunction with finite element analysis
to study the uncertainty (variability) in global buckling loads for compressed
angle ply-plates and cylindrical shallow panels. The numerical analysis shows
evidently that:

1. Certain combinations of the fuzzy parameters (understood in the sense

of the left and right ends of the a-cut considered) are more critical than
others.

2. The scatter of the output response can be easily computed in conjunction
with the standard finite element packages.
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3. The accuracy of the proposed method seems to be strongly associated with
the number of the experimental data available in the analysis, in order to
build an appropriate form of the membership function.

4. The range of the applicability of the fuzzy set theory in buckling problems
can be easily extended and implemented into the analysis of the plate/shell
sensitivities to initial geometric imperfections.

5. The considerable fuzziness of fibre orientations is even possible if mechan-
ical properties (such as Ej, E5 and Gi2) differ insignificantly. It demon-
strates evidently the great influence of uncertainty of mechanical properties
such as E;, E, and Gy on the optimal fibre orientations.
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