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The purpose of this paper is to study the thermal instability analysis of an elastico-viscous
nanofluid layer heated from below. The Rivlin-Ericksen type fluid model is used to describe the
rheological behavior of an elastico-viscous nanofluid. The linear stability criterion for the onset
of both stationary and oscillatory convection is derived by applying the normal model analysis
method. The presence of nanoparticles enhances the thermal conductivity of the fluid, and the
model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis.
The effect of the physical parameters of the system, namely the concentration Rayleigh number,
Prandtl number, capacity ratio, Lewis number, and kinematic visco-elasticity coefficient, on
the stability of the system is numerically investigated. In addition, sufficient conditions for the
non-existence of oscillatory convection are reported.
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Notations

a – wavenumber,
c – specific heat,
d – thickness of the horizontal layer,

DB – diffusion coefficient [m2/s],
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DT – thermophoretic diffusion coefficient,
g – acceleration due to gravity [m/s2],
F – kinematic visco-elasticity parameter,
k – thermal conductivity [W/(m·K)],

Le – Lewis number,
n – growth rate of disturbances,

NA – modified diffusivity ratio,
NB – modified particle-density ratio,
p – pressure [Pa],

Pr – Prandtl number,
q – Darcy velocity vector [m/s],

Ra – Rayleigh number,
Rac – critical Rayleigh number,
Rm – density Rayleigh number,
Rn – concentration Rayleigh number,
t – time [s],
T – temperature [K],

(u, v, w) – Darcy velocity components,
(x, y, z) – space co-ordinates [m].

Greek symbols
α – thermal expansion coefficient [1/K],
ϕ – nanoparticle volume fraction,
κ – thermal diffusivity,
µ – viscosity,
µ′ – visco-elasticity,
ρ – density of fluid [kg/m3],
ρp – nanoparticle mass density [kg/m3],
ω – dimensional frequency.

Superscripts
′ – non-dimensional variables,
′′ – perturbed quantity.

Subscripts
p – particle,
f – fluid,
b – basic state,
0 – lower boundary,
1 – upper boundary,
H – horizontal plane.

1. Introduction

The principle of thermal instability is an important phenomenon that has ap-
plications in many different areas such as geophysics, food processing, oil reser-
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voir modeling, thermal insulator design and nuclear reactors, among others. To
date, thermal instability problems related to different types of fluids and ge-
ometric configurations have been extensively studied. The thermal instability
of a Newtonian fluid under a wide range of hydrodynamic and hydromagnetic
assumptions was discussed in detail by Chandrasekhar [1]. The thermal in-
stability of a Maxwellian visco-elastic fluid in the presence of a magnetic field
was analyzed by Bhatia and Steiner [2]. Scanlon and Segel [3] investigated
the effect of suspended particles on the onset of convection in a horizontal layer
uniformly heated from below, and they found that the critical Rayleigh number
decreases when suspended particles are present. These authors concluded that
the destabilization effect of suspended particles was due to the fact that the heat
capacity of the pure fluid was supplemented by the particles.

Much research in recent years has focused on the study of nanofluids for ap-
plications in several industries such as the automotive, pharmaceutical or energy
supply industries. A nanofluid is a colloidal suspension of nanosized particles,
that is, particles the size of which is below 100 nm, in a base fluid. Common
fluids such as water, ethanol or engine oils are typically used as base fluids in
nanofluids. Among various nanoparticles that have been used in nanofluids, oxide
ceramics such as Al2O3 or CuO, nitride ceramics such as AlN or SiN and several
metals such as Al or Cu can be found. The understanding of the so-called anoma-
lous increase in thermal conductivity of nanofluids has generated considerable
research interest since the term nanofluid was first coined by Choi [4].

Xuan and Li [5] investigated convective heat transfer and flow features of
the Cu-water nanofluid, and they observed that the heat transfer coefficient of
the nanofluid was larger than that of the base fluid under the same Reynolds
number. Buongiorno [6] proposed that the absolute nanoparticle velocity can
be viewed as the sum of the base fluid velocity and a relative slip velocity. After
analyzing the effect of the following seven slip mechanisms: inertia, Brownian
diffusion, thermophoresis, diffusiophoresis, the Magnus effect, and fluid drainage
and gravity, he concluded that Brownian diffusion and thermophoresis are the
dominant slip mechanisms in the absence of turbulent eddies.

The onset of convection in a horizontal layer heated from below (the Bénard
problem) for a nanofluid was studied by Tzou [7]. Alloui et al. [8] performed
an analytical and numerical study of a natural convection problem in a shallow
cavity filled with a nanofluid and heated from below. These authors reported
that the presence of nanoparticles in a fluid reduced the strength of the flow
field, and these reductions were especially relevant at low values of the Rayleigh
number. Furthermore, they found that there is an optimum nanoparticle volume
fraction, which depends on both the type of nanoparticles and the Rayleigh num-
ber, at which the heat transfer through the system is maximum. Yadav et al. [9]
used a Galerkin method to study the onset of convection in the Rayleigh-Bénard
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problem with nanofluids, and they reported that the joint behavior of Brown-
ian motion and thermophoresis of nanoparticles reduced the critical Rayleigh
number by one order of magnitude as compared to fluids without nanoparticles.
A considerable number of thermal instability problems in a horizontal layer of
porous medium saturated by a nanofluid have also been numerically and analyt-
ically investigated by Kuznetsov and Nield [10–12], Nield and Kuznetsov
[13–15] and Chamkha and Rashad [16], Chand [17], Chand and Rana [18–
22], Yadav et al. [23], Chand et al. [22–26], and Rana et al. [27].

All the studies referred above dealt with Newtonian nanofluids. However,
the growing importance of non-Newtonian fluids in geophysical fluid dynamics,
chemical technology, and petroleum industry has attracted widespread interest
in the study on non-Newtonian nanofluids. Although experiments performed by
Toms and Strawbridge [28] revealed that the behavior of a dilute solution of
methyl methacrylate in n-butyl acetate agrees well with the theoretical model
of Oldroyd [29], it is widely known that there are many elastico-viscous fluids
that cannot be characterized by Maxwell’s constitutive relations or by Oldroyd’s
constitutive relations. One such type of fluids, which has relevance in chemical
technology, is the Rivlin-Ericksen elastico-viscous fluid. Rivlin and Ericksen
[30] proposed a theoretical rheological model to describe the behavior of this
type of elastico-viscous fluids.

The thermal instability problem in the Rivlin-Ericksen elastico-viscous fluids
under a considerable amount of different hydrodynamic and hydromagnetic as-
sumptions was studied by Prakash andChand [31, 32],Rana andChand [33],
Sharma and Rana [34], Gupta and Sharma [35], Chand and Rana [36],
and Rana [37]. Recently, Chand and Rana [38], Rana et al. [39], Rana and
Chand [40], Sheu [41], and Chand and Rana [42] used the Oldroyd-B fluid
model to describe the rheological behavior of the nanofluid in their investigation
about thermal instability in a porous medium layer saturated with a viscoelastic
fluid.

The growing number of applications of nanofluids, which include several
fields, motivated the current study. In this study, our main aim is to study the
thermal instability problem in a horizontal layer of a Rivlin-Ericksen elastico-
viscous nanofluid.

2. Mathematical formulations

We consider an infinite horizontal layer of a Rivlin-Ericksen elastico-viscous
nanofluid of thickness d, bounded by the planes z = 0 and z = d. The layer is
heated from below with the gravity force g = (0, 0,−g) aligned in the z direction,
as shown in Fig. 1. The temperature T and the volumetric fraction of nanopar-
ticles ϕ, at the lower (upper) boundary, are assumed to take constant values
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T0 and ϕ0 (T1 and ϕ1), respectively. We know that keeping a constant volume
fraction of nanoparticles at the horizontal boundaries will be almost impossible
in a realistic situation.

Fig. 1. Schematic sketch of the physical situation.

3. Assumptions

The mathematical equations describing the physical model are based on the
following assumptions:

1) all thermophysical properties, except for the density in the buoyancy term,
are constant (the Boussinesq hypothesis);

2) base fluid and nanoparticles are in the thermal equilibrium state;
3) nanoparticles are spherical;
4) nanofluid is incompressible and laminar;
5) negligible radiative heat transfer.

3.1. Governing equations

The conservation equations of mass and momentum for an incompressible
Rivlin-Ericksen elastico-viscous fluid (Chandrasekhar [1], Prakash and
Chand [31] and Rana [37]) are

∇ · q = 0,(3.1)

ρ
dq
dt

= −∇p+ ρg +

(
µ+ µ′

∂

∂t

)
∇2q,(3.2)

where d
dt = ∂

∂t + (q · ∇) stands for convection derivative, q = q(u, v, w) is the
Darcy velocity vector, p is the hydrostatic pressure, g = (0, 0,−g) is the accel-
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eration due to gravity, and µ and µ′ are the viscosity and the visco-elasticity
respectively.

The ρ density of the nanofluid can be written as in Buongiorno [6]:

(3.3) ρ = ϕρp + (1− ϕ) ρf ,

where ϕ is the volume fraction of nanoparticles, ρp is the density of nanoparticles,
and ρf is the density of the base fluid. Following Tzou [7] and Kuznetsov and
Nield [10] we approximate the density of the nanofluid by that of the base fluid,
that is, we consider ρ = ρf . Now by introducing the Boussinesq approximation
for the base fluid, the specific weight ρg in Eq. (3.2) becomes

(3.4) ρg ∼= {ϕρp + (1− ϕ) [ρ (1− α (T − T0))]}g,

where α is the coefficient of thermal expansion.
Thus, the equation of motion (3.2) for a Rivlin-Ericksen elastico-viscous

nanofluid can be written as

(3.5) ρ
∂q
∂t

= −∇p+ {ϕρp + (1− ϕ) [ρ (1− α (T − T0))]}g+

(
µ+ µ′

∂

∂t

)
∇2q.

The continuity equation for the nanoparticles (Buongiorno [6]) is

(3.6)
∂ϕ

∂t
+ q · ∇ϕ = DB∇2ϕ+

DT

T1
∇2T.

The energy equation for the nanofluid (Buongiorno [6]) is

(3.7) ρc

(
∂T

∂t
+ q · ∇T

)
= k∇2T + (ρc)p

(
DB∇ϕ · ∇T +

DT

T1
∇T · ∇T

)
,

where ρc is the heat capacity of the base fluid, (ρc)p is the heat capacity of
nanoparticles, and k is the nanofluid thermal conductivity.

The boundary conditions are

w = 0, T = T0, ϕ = ϕ0 at z = 0,(3.8)1
w = 0, T = T1, ϕ = ϕ1 at z = 1.(3.8)2

We introduce non-dimensional variables as

(x′, y′, z′) =
1

d
(x, y, z) , (u′, v′, w′) =

d

κ
(u, v, w) , t′ =

κ

d2
t,

p′ =
d2

µκ
p, ϕ′ =

(ϕ− ϕ0)

(ϕ1 − ϕ0)
, T ′ =

(T − T0)
(T0 − T1)

,

where κ = k
ρc is the thermal diffusivity of the fluid.
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Using the scales defined above and considering that, in the spirit of Boussi-
nesq approximation, temperature gradients in the dilute suspension of nanopar-
ticles are small enough to linearize Eq. (3.5) by neglecting the term involving the
product of ϕ and T (Tzou [7]) Eqs. (3.1), (3.5)–(3.7) in non-dimensional form
can be written as (dropping the primes for simplicity)

∇ · q = 0,(3.9)

1

Pr

∂q
∂t

= −∇p+

(
1 + F

∂

∂t

)
∇2q− Rm êz + RaT êz − Rnϕêz,(3.10)

∂ϕ

∂t
+ q · ∇ϕ =

1

Le
∇2ϕ+

NA

Le
∇2T,(3.11)

∂T

∂t
+ q · ∇T = ∇2T +

NB

Le
∇ϕ · ∇T +

NANB

Le
∇T · ∇T,(3.12)

where non-dimensional parameters are:

Pr =
µ

ρκ
is the Prandtl number,

Le =
κ

DB
is the Lewis number,

F =
µ′κ

µd2
is the kinematic visco-elasticity parameter,

Ra =
ρgαd3 (T0 − T1)

µκ
is the Rayleigh number,

Rm =
ρpϕ0 + ρ (1− ϕ0) gd

3

µκ
is the density Rayleigh number,

Rn =
(ρp − ρ) (ϕ1 − ϕ0) gd

3

µκ
is the concentration Rayleigh number,

NA =
DT (T0 − T1)
DBT1 (ϕ1 − ϕ0)

is the modified diffusivity ratio, and

NB =
ρpcp (ϕ1 − ϕ0)

ρc
is the modified particle-density ratio.
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The dimensionless boundary conditions are

w = 0, T = 1, ϕ = 0 at z = 0,(3.13)1

w = 0, T = 0, ϕ = 1 at z = 1.(3.13)2

3.2. Basic solutions

Following Kuznetsov and Nield [10–12] and Sheu [41] we assume a qui-
escent basic state that verifies

(3.14) u = v = w = 0, p = p(z), T = Tb(z), ϕ = ϕb(z).

Therefore, when the basic state defined in Eq. (3.14) is substituted into
Eqs. (3.9)–(3.12), these equations reduce to

0 = − dpb(z)
dz

− Rm + RaTb(z)− Rnϕb(z),(3.15)

d2ϕb(z)

dz2
+NA

d2Tb(z)

dz2
= 0,(3.16)

d2Tb(z)

dz2
+
NB

Le

dϕb(z)
dz

dTb(z)
dz

+
NANB

Le

(
dTb(z)
dz

)2

= 0.(3.17)

Using boundary conditions (3.13)1 and (3.13)2 the solution of Eq. (3.16) is

(3.18) ϕb(z) = −NATb + (1−NA) z +NA.

By substituting expression (3.18) into Eq. (3.17), we obtain

(3.19)
d2Tb(z)

dz2
+

(1−NA)NB

Le

dTb(z)
dz

= 0.

The solution of differential Eq. (3.19) with boundary conditions (3.13)1 and
(3.13)2 is

(3.20) Tb(z) =
1− e−(1−NA)NB(1−z)/Le

1− e−(1−NA)NB/Le
.

Since, according to Sheu [41], the exponents in Eq. (3.20) are small for
most typical nanofluids the exponential function in Eq. (3.20) is expanded into
the power series, and all the terms except for the first order one are neglected.
Therefore, a good approximation for the basic state solution is Tb = 1 − z and
ϕb = z.
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3.3. Perturbation solutions

To study the stability of the system, we superimposed infinitesimal pertur-
bations on the basic state, so that

(3.21)
q (u, v, w) = 0 + q′′ (u, v, w) , T = (1− z) + T ′′,

ϕ = z + ϕ′′, p = pb + p′′.

Introducing Eq. (3.21) into Eqs. (3.8)–(3.11), linearizing the resulting equa-
tions by neglecting nonlinear terms that are the product of prime quantities and
dropping the primes (′′) for convenience, the following equations are obtained:

∇ · q = 0,(3.22)

1

Pr

∂q
∂t

= −∇p+

(
1 + F

∂

∂t

)
∇2q + RaT êz − Rnϕêz,(3.23)

∂ϕ

∂t
+ w =

1

Le
∇2ϕ+

NA

Le
∇2T,(3.24)

∂T

∂t
− w = ∇2T +

NB

Le

(
∂T

∂z
− ∂ϕ

∂z

)
− 2NANB

Le

∂T

∂z
.(3.25)

Boundary conditions for Eqs. (3.22)–(3.25) are

(3.26) w = 0, T = 0, ϕ = 0 at z = 0, 1.

Please note that as the parameter Rm is not involved in Eqs. (3.22)–(3.26) it
is just a measure of the basic static pressure gradient. The six unknowns: u, v,
w, p, T , and ϕ can be reduced to three by operating Eq. (3.23) with êz ·curl curl,
which yields

(3.27)
1

Pr

∂

∂t
∇2w −

(
1 + F

∂

∂t

)
∇4w = Ra∇2

HT − Rn∇2
Hϕ,

where ∇2
H is the two-dimensional Laplace operator on the horizontal plane, that

is, ∇2
H = ∂

∂x2
+ ∂

∂y2
.

4. Normal modes

We express the disturbances in normal modes of the form

(4.1) [w, T, ϕ] = [W (z), Θ(z), Φ(z)] exp (ikxx+ ikyy + ωt) ,

where kx and ky are the wave numbers in the x and y direction, respectively,
and ω is the growth rate of the disturbances.
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Substituting the identities in Eq. (4.1) into Eqs. (3.24)–(3.27) we obtain the
following eigenvalue problem:(

D2 − a2
) (

(1 + ωF )
(
D2 − a2

)
− ω

Pr

)
W − a2RaΘ + a2RnΦ = 0,(4.2)

W − NA

Le

(
D2 − a2

)
Θ −

(
1

Le

(
D2 − a2

)
− ω

)
Φ = 0,(4.3)

W +

(
D2 − a2 − ω +

NB

Le
D − 2NANB

Le
D

)
Θ − NB

Le
DΦ = 0,(4.4)

W = 0, D2W = 0, Θ = 0, Φ = 0 at z = 0(4.5)

and

(4.6) W = 0, D2W = 0, Θ = 0, Φ = 0 at z = 1,

where D ≡ d
dz and a =

√
k2x + k2y is the dimensionless horizontal wave number.

5. Linear stability analysis

Let us consider solutions W , Θ and Φ of the form

(5.1) W = W0 sin (πz) , Θ = Θ0 sin (πz) , Φ = Φ0 sin (πz) .

Substituting Eq. (5.1) into Eqs. (4.2)–(4.4) and integrating each equation
from z = 0 to z = 1, we obtain the following linear system:

−J
(

(1 + ωF ) J +
n

Pr

)
a2Ra −a2Rn

1 − (J + ω) 0

1
NA

Le
J

J

Le
+ ω



W0

Θ0

Φ0

 =


0

0

0

,
where J = π2 + a2

The above linear system has a non-trivial solution if and only if

(5.2) Ra =
1

a2

(
(J + ω)

(
J2 +

(
J2F +

J

Pr

)
ω

))
−

(
NA
Le J + J

)
+ ω

J
Le + ω

Rn.

Setting n = iω (where ω is a real dimensional frequency) in Eq. (5.2), we
obtain

(5.3) Ra = ∆1 + iω∆2,
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where

(5.4) ∆1 =
J

a2

(
J2 −

(
JF +

1

Pr

)
ω2

)
−

J2

Le2
(NA + Le) + ω2(
J
Le

)2
+ ω2

Rn,

and

(5.5) ∆2 =
J2

a2

(
1 + JF +

1

Pr

)
−

J
Le − J

(
NA
Le + 1

)
(
J
Le

)2
+ ω2

Rn.

Since Ra is a physical quantity, it must be real. Hence, from Eq. (5.3) we
can conclude that either ω = 0 (steady onset) or ω 6= 0 and ∆2 = 0 (oscillatory
onset).

6. Stationary convection

For stationary convection n = 0 (ω = 0), Eq. (5.2) reduces to

(6.1) (Ra)s =

(
π2 + a2

)3
a2

− Rn (Le +NA) .

Equation (6.1) expresses the Rayleigh number as a function of the dimension-
less horizontal wave number and the parameters Rn, Le, NA. Since the elastico-
viscous parameter F is not present in Eq. (6.1) it may be concluded that in the
stationary case (n = 0) the Rivlin-Ericksen elastico-viscous fluid behaves like an
ordinary Newtonian fluid. Please note that Eq. (6.1) is identical to that obtained
by Sheu [42] in the absence of porous medium and Chand and Rana [18] in
the absence of Darcy-Brinkman porous medium.

The critical cell size at the onset of instability is obtained by minimizing
Ra with respect to wave number a. Thus, the critical cell size must satisfy(
∂Ra
∂a

)
a=ac

= 0, which gives

(6.2) 2
(
a2c
)3

+ 3π2a2c − π6 = 0.

From Eq. (6.1), we obtain

(6.3) ac =
π√
2

= 2.22144.

The corresponding critical Rayleigh number Rac for steady onset is

(6.4) (Rac)s =
27π2

4
− Rn (Le +NA) .
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7. Oscillatory convection

For oscillatory convection (ω 6= 0), we must have ∆2 = 0. Hence, the fre-
quency of the oscillations is

(7.1) ω2 =
a2

J

 1
Le −

(
NA
Le + 1

)
1 + JF + 1

Pr

Rn− J2

Le2
.

Equation (5.3) with ∆2 = 0 gives the following thermal oscillatory Rayleigh
number:

(7.2) Raosc =
J

a2

(
J2 −

(
JF +

1

Pr

)
ω2

)
−

J2

Le2
(Le +NA) + ω2(
J
Le

)2
+ ω2

Rn.

Since oscillatory convection will only exist when positive values for ω2 in
Eq. (7.3) can be obtained, the following conditions:

(7.3)
Rn < 0 and

1

Le
>

(
NA

Le
+ 1

)
or Rn > 0 and

1

Le
<

(
NA

Le
+ 1

)
,

are sufficient for the non-existence of oscillatory convection. Please note that
the violation of expressions (7.3) does not necessarily imply the occurrence of
oscillatory convection.

8. Results and discussions

Critical Rayleigh numbers for the onset of steady and oscillatory convec-
tion are given by Eqs. (6.4), (7.1), and (7.2), respectively. The critical Rayleigh
value obtained for the onset of steady convection in the current Rivlin-Ericksen
elastico-viscous fluid problem does not depend on viscoelastic parameters, and
it takes the same value as the one obtained for an ordinary Newtonian fluid.
Furthermore, the critical wave number ac, defined by Eq. (6.3) at the onset
of steady convection coincides with those reported by Tzou [7], Kuznetsov
and Nield [12], and Chand and Rana [18]. Please note that this critical value
does not depend on any thermophysical property of the nanofluid. Consequently,
the combined behavior of Brownian motion and thermophoresis of nanoparticles
does not change the cell size at the onset of steady instability and the critical
cell size (ac) is identical to the well known result for the Bénard instability with
a regular fluid. In the absence of nanoparticles, that is Rn = NA = 0, the crit-
ical Rayleigh number takes the value Rac = 27π2

4 , which is exactly the critical
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Rayleigh number for regular fluids see Chandrasekhar [1]. Thus the combined
effect of Brownian motion and thermophoresis of nanoparticles on the critical
Rayleigh number is reflected in the second term in Eq. (6.4). From Eq. (6.4),
it can be concluded that for the case of top-heavy distribution of nanoparticles
(ϕ1 > ϕ and ρp > ρ), which corresponds to positive values of Rn, the value of
the steady critical Rayleigh number for the nanofluid is smaller than that for an
ordinary fluid, that is, steady convection sets earlier in these kinds of nanofluids
than in an ordinary fluid. This implies that the thermal conductivity of ordinary
fluids is higher than that of nanofluids with a top-heavy distribution of nano-
particles. On the contrary, for the case of bottom-heavy distribution of nanopar-
ticles (ϕ1 < ϕ and ρp > ρ), which corresponds to the negative values of Rn,
the value of the critical Rayleigh number for the nanofluid is larger than that
for an ordinary fluid, that is, convection sets earlier in an ordinary fluid than
in a nanofluid with a bottom-heavy distribution of nanoparticles. This implies
that the thermal conductivity of this kind of nanofluids is higher than that of
ordinary fluids.

The computations are carried out for different values of parameters con-
sidered in the range 102 ≤ Ra ≤ 105 (thermal Rayleigh number), −10 ≤
NA ≤ −1 (modified diffusivity ratio), 102 ≤ Le ≤ 104 (Lewis number), −10 ≤
Rn ≤ 10 (nanoparticles’ Rayleigh number), 10−1 ≤ F ≤ 10 (kinematic visco-
elasticity parameter), and 10−2 ≤ Pr ≤ 102 (Prandtl number Pr) (Nield and
Kuznetsov [15], Chand and Rana [31], Chand and Rana [38]).

The variation of the steady thermal Rayleigh number Ras as a function of
the wave number for different sets of values for the physical parameters Le, Rn
and NA are shown in Figs. 2–4. The values of NA and Rn are fixed to −5 and −1,
respectively.

Fig. 2. Variation of stationary Rayleigh number with wave number for different values
of Lewis number.
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Fig. 3. Variation of stationary Rayleigh number with wave number for different values
of concentration Rayleigh number.

Fig. 4. Variation of stationary Rayleigh number with wave number for different values
of modified diffusivity ratio.

The variation of Ras with the wave number for three different values of the
Lewis number, namely Le = 100, 500 and 1000, is plotted in Fig. 2. The increase
in the Rayleigh number, observed in Fig. 2, as the Lewis number is increased
reveals that an increase in the Lewis number tends to delay the onset of steady
convection.

Figure 3 represents the variation of stationary Rayleigh number Ras with
wave number for the different value of concentration Rayleigh number, and it
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is found that the stationary Rayleigh number decreases with an increase in the
value of the concentration Rayleigh number Rn, which implies that the concen-
tration Rayleigh number destabilizes the stationary convection. The negative
value of Rn indicates a bottom-heavy distribution while the positive value of Rn
indicates a top-heavy distribution of nanoparticles. It is also observed that the
stationary convection is possible for both bottom-heavy and top-heavy nanopar-
ticles’ distribution, and the stationary Rayleigh number is smaller for a top-heavy
distribution as compared to that of a bottom-heavy distribution of nanoparticles.

Figure 4 represents the variation of the stationary Rayleigh number Ras as a
function of the wave number for two values of modified diffusivity ratio (NA =
−10 and −1) when Le = 500 and Rn = −1. It is observed that the stationary
Rayleigh number Ras increases with an increase in the value ofNA, which implies
that a modified diffusivity ratio stabilizes the fluid layer. Nield andKuznetsov
[15] and Kuznetsov and Nield [12] showed that oscillatory instability is pos-
sible only for bottom-heavy nanoparticle distributions. For heavy nanoparticles
(ρp > ρ), a bottom-heavy nanoparticle distribution is equivalent to a negative
value of Rn. In such a case, the value of NA will also be negative. From now
only negative values of Rn are considered. Results observed in Figs. 2, 3 and 4
are consistent with those reported by Sheu [41] and Chand and Rana [18].

Figure 5 shows the variation of the oscillatory Rayleigh number with the
wave number for the fixed value of the kinematic visco-elasticity parameter F .
It is found that the oscillatory Rayleigh number increases with an increase in
the value of the kinematic visco-elasticity parameter F . Thus, kinematic visco-
elasticity parameter F has a stabilizing effect on the oscillatory convection.

Fig. 5. Variation of oscillatory Rayleigh number with wave number for the different
value of kinematic visco-elasticity parameter F .
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Figure 6 shows the variation of the oscillatory Rayleigh number with wave
number a for the fixed values of modified diffusivity ratio NA, and it is found that
the oscillatory Rayleigh number slightly decreases as the values of the modified
diffusivity ratio NA increase; thus a modified diffusivity ratio has a destabilizing
effect on the oscillatory convection.

Fig. 6. Variation of oscillatory Rayleigh number with wave number for different modified
diffusivity ratio.

Figure 7 shows the variation of the oscillatory Rayleigh number with wave
number a for the fixed values of the Prandtl number, and it is found that the
oscillatory Rayliegh number slightly decreases with an increase in the value of

Fig. 7. Variation of oscillatory Rayleigh number with wave number for different
Prandtl number.
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the Prandtl number; thus Prandtl number has a destabilizing effect on the os-
cillatory convection.

Figure 8 shows the variation of the oscillatory Rayleigh number with wave
number a for the fixed values of the concentration Rayleigh number, and it is
observed that the oscillatory Rayleigh number slightly decreases with an increase
in the values of the concentration Rayleigh number (for a bottom-heavy distri-
bution of nanoparticles); thus a concentration Rayleigh number destabilizes the
oscillatory convection. It is also observed that the oscillatory convection was not
possible for the top-heavy distribution of nanoparticles.

Fig. 8. Variation of oscillatory Rayleigh number Ra with wave number for different
concentration Rayleigh number.

Figure 9 shows the variation in the oscillatory Rayleigh number with wave
number a for the fixed values of the Lewis number, and it is found that the
oscillatory Rayleigh number decreases with an increase in the values of the Lewis
number. Thus the Lewis number has a destabilizing effect on the oscillatory
convection.

Figure 10 shows the variation of both stationary Rayleigh number and oscilla-
tory Rayleigh number with wave number for the fixed values of other parameters.
It is found that the stationary Rayleigh number is higher than the oscillatory
Rayleigh number. Thus the oscillatory instability could set in before the station-
ary instability, and this result suggests that the oscillatory convection might set
in before the stationary convection.

From Figs. 5 to 9, it is observed that the kinematic visco-elasticity parameter
F has a stabilizing effect while the rest of physical parameters, namely NA, Pr,
Rn and Le, have a destabilizing effect on the oscillatory convection, that is,
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Fig. 9. Variation of oscillatory Rayleigh number Ra with wave number for different
Lewis number.

Fig. 10. Variation of stationary Rayleigh number and oscillatory Rayleigh number
with wave number.

the onset of oscillatory convection is accelerated when one of these parameters
is increased. Figure 10 shows the variation of both stationary and oscillatory
Rayleigh numbers as the wave number is varied for a set of fixed values of the
rest of the physical parameters.

In Fig. 10, it can be observed that the stationary Rayleigh number is higher
than the oscillatory Rayleigh number along with the whole range of wave num-
bers investigated. This result suggests that the oscillatory convection might set
in before the steady convection.
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The variation of the critical oscillatory Rayleigh number with the kinematic
visco-elasticity parameter F for different sets of values for the physical parame-
ters Le, Rn, NA and Pr is shown in Figs. 11–14. It is worth noting that for the
set of physical parameters chosen in all these figures convection sets in with an
oscillatory mode and it remains oscillatory until a certain (critical) value of the
kinematic visco-elasticity parameter F is reached. At this critical value of F , con-

Fig. 11. Variation in the critical oscillatory Rayleigh number with a kinematic visco-
elasticity parameter for different values of Prandtl number Pr.

Fig. 12. Variation in the critical oscillatory Rayleigh number with a kinematic visco-
elasticity parameter for different values of modified diffusivity ratio.



320 R. CHAND et al.

Fig. 13. Variation in the critical oscillatory Rayleigh number with a kinematic visco-
elasticity parameter for different values of Lewis number Le.

Fig. 14. Variation in the critical oscillatory Rayleigh number with a kinematic visco-
elasticity parameter for different values of concentration Rayleigh number.

vection ceases to be oscillatory, and it becomes steady. This critical value of F ,
which depends on the other physical parameters: Le, Rn, NA and Pr, determines
the boundary between oscillatory and steady convection.

Figure 11 shows the effect of the Prandtl number Pr on the variation of the
critical oscillatory Rayleigh number as a function or the kinematic viscoelasticity
parameter F when Le = 500, NA = −5 and Rn = −1. It was also found that
the oscillatory Rayleigh number decreases with increases in the Prandtl number
Pr, indicating a destabilizing effect of the Prandtl number on the oscillatory
convection.
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Figure 12 shows the effect of the modified diffusivity ratio NA on the oscilla-
tory Rayleigh number for the fixed values of other parameters. It is found that
the oscillatory Rayleigh number slightly decreases with an increase in the values
of the modified diffusivity ratio; thus modified diffusivity ratio has a destabilizing
effect on the oscillatory convection.

Figure 13 shows the effect of the Lewis number on the oscillatory Rayleigh
number for the fixed values of other parameters. It is found that Rayleigh number
decreases with an increase in the values of the Lewis number; thus the Lewis
number has a destabilizing effect on the oscillatory convection.

Figure 14 shows the effect of the concentration Rayleigh number on the os-
cillatory Rayleigh number for the fixed values of other parameters. It is found
that Rayleigh number slightly decreases with an increase in the value of the
concentration Rayleigh number, which implies that the concentration Rayleigh
number has a destabilizing effect on the oscillatory convection.

The results presented in Figs. 5–14 are in good agreement with those obtained
by Sheu [42].

9. Conclusions

The onset of both stationary and oscillatory convection for a Rivlin-Ericksen
elastico-viscous nanofluid layer heated from below is investigated by using a lin-
ear stability analysis. For the case of stationary convection, the Rivlin-Ericksen
nanofluid behaves like an ordinary Newtonian nanofluid. The effect of both the
Lewis number Le and the modified diffusivity ratio NA is to stabilize the sta-
tionary convection and to destabilize the oscillatory convection. The concentra-
tion Rayleigh number Rn destabilizes both stationary and oscillatory convec-
tion. The oscillatory convection is possible only for bottom-heavy nanoparticle
distributions whereas stationary convection is possible for both bottom and top-
heavy distributions of nanoparticles. The Prandtl number Pr destabilizes the
oscillatory convection and does not affect stationary convection. The kinematic
visco-elasticity parameter F stabilizes the oscillatory convection and does not
affect stationary convection. Convection initially begins in the form of an os-
cillatory mode, and it remains oscillatory until certain (critical) value of the
kinematic visco-elasticity parameter F is reached. At this critical value of F ,
convection ceases to be oscillatory, and stationary convection occurs. This crit-
ical value of F , which depends upon the rest of the parameters, namely Le,
NA and Rn, determines the boundary between oscillatory and stationary con-
vection. The steady Rayleigh number is higher than the oscillatory Rayleigh
number. Sufficient conditions for the non-existence of oscillatory convection are
presented.
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