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1. Introduction

The study of magnetohydrodynamic (MHD) flows of non-Newtonian fluid in
a porous medium has attracted the attention of many researchers. This is due
to a wide variety of applications for the MHD flows of non-Newtonian fluids
in a porous medium which are encountered in irrigation problems, heat-storage
beds, biological systems, processing of petroleum, and textile, paper and poly-
mer composite industries. Numerous studies have been presented on various
aspects of MHD flows of non-Newtonian fluid flows passing through a porous
medium [1–4]. Rosca and Pop [5] investigated the flow and heat transfer of
Powell-Eyring fluid over a shrinking surface in a parallel free stream. Wen-
chang et al. [6] introduced the fractional calculus approach in the constitutive
relationship model of a generalized Maxwell fluid between two parallel plates.
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Khan et al. [7] examined the unsteady squeezing flow of a Casson fluid between
parallel plates. Attia and Sayed-Ahmed [8] analyzed the unsteady magneto-
hydrodynamic flow of a non-Newtonian Casson fluid bounded by two parallel
non-conducting porous plates. Chiu-On Ng [9] developed analytical solutions
for steady electroosmotic (EO) flow of a Casson fluid through a parallel-plate
microchannel. Hayat et al. [10] investigated the stagnation point flow and heat
transfer of a Casson fluid towards a stretching surface. The boundary layer flow
of a Casson fluid over an exponentially permeable shrinking sheet has been
examined by Nadeem et al. [11].

The pulsatile flow in a porous channel or pipe is important to understand
the process of dialysis of blood in an artificial kidney [12–15]. An investigation
about heat transfer to pulsatile flow in a porous channel was made by Rad-
hakrishnamacharya and Maiti [15]. In their investigation, the walls were
maintained at uniform temperatures and fluid was injected through one wall
and removed at the opposite wall at the same rate. Siddiqui et al. [16] studied
the pulsatile flow of blood in a stenosed artery by modeling blood as a Cas-
son fluid. Shit and Roy [17] investigated the pulsatile flow and heat transfer
of a magneto-micropolar fluid through a stenosed artery under the influence of
body acceleration. Shawky [18] studied the pulsatile flow with heat transfer of
dusty magnetohydrodynamic Ree-Eyring fluid through a channel.

The study of thermal radiation has received much attention of several re-
searchers because of its many applications in environmental and scientific pro-
cesses, physics and engineering. For example, the research on thermal radiation
is used in aeronautics, fire research, heating and cooling of channels, nuclear
power plants, gas turbines, and various propulsion devices for missiles, aircraft,
space vehicles, and satellites [19–23]. Hossain et al. [24] studied the effect of
radiation on free convection from a porous vertical plate. An analysis of ther-
mal radiation on steady MHD asymmetric flow past a semi-infinite stationary
plate was made by Raptis et al. [25].MukhopadhyaY [26] examined the ther-
mal radiation effect on unsteady flow of a Casson fluid and heat transfer over
a stretching surface in presence of suction/blowing. The effects of slip and ther-
mal radiation on the MHD free convection flow of a Casson fluid over a cylinder
in a non-Darcy porous medium were investigated by Makanda et al. [27].

The combined study of heat and mass transfer problems with chemical re-
action are of great practical importance in many processes and therefore have
received a considerable amount of attention in recent years. Possible applica-
tions of this type of flow can be found in many industries such as electric power
industry, chemical industry, food processing, etc. A reaction is said to be of
first order if the rate of reaction is directly proportional to concentration itself.
In many chemical engineering processes, a chemical reaction between a foreign
mass and the fluid does occur. These processes happen in numerous industrial
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applications such as polymer production, manufacturing of ceramics or glass-
ware, food processing [28–32]. Das et al. [33] analyzed the effects of a first order
chemical reaction on the flow past an impulsively started infinite vertical plate
with constant heat flux and mass transfer. Nable et al. [34] examined the ef-
fects of chemical reaction and heat radiation on the MHD flow of a viscoelastic
fluid through a porous medium over a horizontal stretching flat plate. Shehzad
et al. [35] studied the effects of mass transfer on the MHD flow of a Casson fluid
with chemical reaction and suction. Recently, Srinivas et al. [36] have presented
a note on thermal-diffusion and chemical reaction effects on the MHD pulsating
flow in a porous channel with slip and convective boundary conditions.

To the best of authors’ knowledge, no investigation has been made yet that
would analyze the MHD pulsating flow of a Casson fluid in a porous space with
thermal radiation and chemical reaction. Such consideration is of great value in
engineering and science research. Keeping in view the wide range of applications
both in engineering and science, an attempt is made in this paper to study the
effects of thermal radiation and chemical reaction on the pulsating MHD flow of
a Casson fluid between two walls with Joule heating. The structure of the paper
is as follows: the formulation of problem is given in Sec. 2. Section 3 comprises
the solution of the problem. The results and discussion are presented in Sec. 4.
Section 5 contains the concluding remarks.

2. Formulation of the problem

Let us consider the pulsatile flow of electrically conducting Casson fluid
between two parallel walls in Darcian porous medium, at a distance h in a porous
medium apart, which is driven by the unsteady pressure gradient

(2.1) −1

ρ

∂p∗

∂x∗
= A(1 + ε eiωt

∗
),

where A is a known constant, ε (� 1) is a suitably chosen positive quantity,
ω is the frequency, p∗ is pressure and ρ is density of the fluid. As shown in Fig. 1
a cartesian coordinate system is taken in such a way that the x∗-axis is taken
along the lower wall and the y∗-axis is normal to it. A magnetic field of uniform
strength B0 is applied perpendicular to the walls. The rheological equation of
state for an isotropic and incompressible flow of a Casson fluid is [10, 11, 26]

(2.2) τij =

{
2(µB + Py∗/

√
2π)eij , π > πc,

2(µB + Py∗/
√

2πc)eij , π < πc,

where τij is the (i, j)-th component of the stress tensor, µB is the plastic dy-
namic viscosity of the non-Newtonian fluid, Py∗ is the yield stress of the fluid,
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Fig. 1. Physical model of the studied problem.

π = eijeij ; eij is the (i, j)-th component of the deformation rate and πc is the
critical value of this product based on the non-Newtonian model. Under these
assumptions, the governing equations are

∂u∗

∂t∗
= −1

ρ

∂p∗

∂x∗
+ ν

(
1 +

1

β

)
∂2u∗

∂y∗2
− σB2

0

ρ
u∗ − ν

k
u∗,(2.3)

∂T ∗

∂t∗
=

κ

ρCp

∂2T ∗

∂y∗2
+

µ

ρCp

(
1 +

1

β

)(
∂u∗

∂y∗

)2

− 1

ρCp

∂qr
∂y∗

+
σB2

0

ρCp
u∗2,(2.4)

∂C∗

∂t∗
= D

∂2C∗

∂y∗2
+
DkT
Tm

∂2T ∗

∂y∗2
− k1C∗.(2.5)

The corresponding boundary conditions are

(2.6) u∗ = 0, T ∗ = T0, C∗ = C0 at y∗ = 0,

(2.7) u∗ = 0, T ∗ = T1, C∗ = C1 at y∗ = h,

where u∗ is dimensional velocity in x∗ direction, ν is the kinematic viscosity,
β = µB

√
2πc

Py∗
is the Casson fluid parameter, σ is electrical conductivity, µ is the

dynamic viscosity, k is the permeability of porous medium, Cp is the specific heat
at constant pressure, κ is the thermal conductivity, T ∗, C∗ are the temperatu-
re and concentration of the fluid, respectively, T0, T1(> T0) are the temperatures
of the lower and upper walls, respectively, C0, C1(> C0) are the concentrations of
the lower and upper walls respectively, D is the coefficient of mass diffusivity, k1
is the first order chemical reaction rate, kT is the thermal diffusion ratio, Tm is
the mean temperature of the fluid, and qr is the radiative heat flux. By using
the Rosseland approximation for radiative heat flux, qr is defined as [20, 21, 23]

(2.8) qr = −
(

4σ∗

3χ

)
∂T ∗4

∂y∗
,
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where σ∗ is the Stefan-Boltzmann constant, and χ is the Rosseland mean ab-
sorption co-efficient. We assume that the temperature differences within the flow
are sufficiently small such that T ∗4 may be expressed as a linear function of the
temperature. This is accomplished by expanding T ∗4 in a Taylor series about
T0 and neglecting higher order terms, thus:

(2.9) T ∗4 ∼= 4T 3
0 T
∗ − 3T 4

0 .

On substituting Eqs. (2.8) and (2.9) into Eq. (2.4), we obtain

(2.10)
∂T ∗

∂t∗
=

κ

ρCp

∂2T ∗

∂y∗2
+

µ

ρCp

(
1 +

1

β

)(
∂u∗

∂y∗

)2

+
1

ρCp

16σ∗T 3
0

3χ

∂2T ∗

∂y∗2
+
σB2

0

ρCp
u∗2.

By introducing non-dimensional parameters,

(2.11)

u =
u∗ω

A
, t = t∗ω, x =

x∗

h
, y =

y∗

h
,

θ =
T ∗ − T0
T1 − T0

, φ =
C∗ − C0

C1 − C0
, p =

p∗

Aρh
,

Eqs. (2.3), (2.10) and (2.5) become

∂u

∂t
= −∂p

∂x
+

(
1 +

1

β

)
1

H2

(
∂2u

∂y2

)
− 1

H2

(
M2 +

1

Da

)
u,(2.12)

∂θ

∂t
=

1

PrH2

(
1 +

4

3
Rd

)
∂2θ

∂y2
+

(
1 +

1

β

)
Ec

H2

(
∂u

∂y

)2

+
M2Ec

H2
u2,(2.13)

∂φ

∂t
=

1

ScH2

∂2φ

∂y2
+

Sr

H2

∂2θ

∂y2
− γ

H2
φ− K1

H2
,(2.14)

where Da = k
h2

is the Darcy number of the porous media, Pr =
µCp

κ is the

Prandtl number, Ec =
(A
ω
)2

Cp(T1−T0) is the Eckert number, Rd =
4σ∗T 3

0
κχ is the radia-

tion parameter, M = B0h
√
σ√

µ is the Hartmann number, H = h
√
ω√
ν

is frequency

parameter, Sr = DKT (T1−T0)
Tmν(C1−C0)

is the Soret number, Sc = ν
D is the Schmidt number,

γ = k1h2

ν is the chemical reaction parameter and K1 = k1C0h2

ν(C1−C0)
.

The corresponding boundary conditions are

(2.15) u = 0, θ = 0, φ = 0 at y = 0,

(2.16) u = 0, θ = 1, φ = 1 at y = 1.
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3. Solution of the problem

The velocity u, temperature θ and concentration φ can be assumed to have
the form [15, 18]

u = u0(y) + εu1(y)eit,(3.1)

θ = θ0(y) + εθ1(y)eit + ε2θ2(y)e2it,(3.2)

φ = φ0(y) + εφ1(y)eit + ε2φ2(y)e2it.(3.3)

Now, by substituting Eqs. (3.1)–(3.3) into Eqs. (2.12)–(2.14) and then equating
the coefficients of various powers of ε, we obtain(

1 +
1

β

)
u′′0 −

(
M2 +

1

Da

)
u0 +H2 = 0,(3.4)

(
1 +

1

β

)
u′′1 −

(
M2 +

1

Da
+ iH2

)
u1 +H2 = 0,(3.5)

(
1 +

4

3
Rd
)
θ′′0 +

(
1 +

1

β

)
Ec Pru′20 + M2Ec Pru20 = 0,(3.6)

(
1 +

4

3
Rd
)
θ′′1 − iH2Pr θ1 + 2

(
1 +

1

β

)
Ec Pru′0u

′
1(3.7)

+ 2M2Ec Pru0u1 = 0,(
1 +

4

3
Rd
)
θ′′2 − 2iH2Pr θ2 +

(
1 +

1

β

)
Ec Pru′21 + M2Ec Pru21 = 0,(3.8)

φ′′0 − γScφ0 −K1Sc + Sc Sr θ′′0 = 0,(3.9)

φ′′1 − (iH2Sc + γSc)φ1 + Sc Sr θ′′1 = 0,(3.10)

φ′′2 − (2iH2Sc + γSc)φ2 + Sc Sr θ′′2 = 0.(3.11)

The corresponding boundary conditions are:

(3.12)

u0(0) = 0, u0(1) = 0, u1(0) = 0, u1(1) = 0,

θ0(0) = 0, θ0(1) = 1, θ1(0) = 0, θ1(1) = 0,

θ2(0) = 0, θ2(1) = 0, φ0(0) = 0, φ0(1) = 1,

φ1(0) = 0, φ1(1) = 0, φ2(0) = 0, φ2(1) = 0.
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By solving Eqs. (3.4)-(3.11) with the corresponding boundary conditions (3.12),
one obtains

u0 = A1 cos
√
B1y +A2 sin

√
B1y +A3,(3.13)

u1 = A4 cos
√
B2y +A5 sin

√
B2y +A6,(3.14)

(3.15) θ0 = A7 +A8y +A9y
2 +A10 cos

√
B1y +A11 sin

√
B1y

+A12 cos 2
√
B1y +A13 sin 2

√
B1y,

(3.16) θ1 = A14 cos
√
B3y +A15 sin

√
B3y +A16 cos(

√
B1 −

√
B2)y

+A17 cos(
√
B1 +

√
B2)y +A18 sin(

√
B1 +

√
B2)y

+A19 sin(
√
B1 −

√
B2)y +A20 cos

√
B1y +A21 sin

√
B1y

+A22 cos
√
B2y +A23 sin

√
B2y +A24,

(3.17) θ2 = A25 cos
√
B4y +A26 sin

√
B4y +A27 cos 2

√
B2y

+A28 sin 2
√
B2y +A29 sin

√
B2y +A30 cos

√
B2y +A31,

(3.18) φ0 = A32 cos
√
B5y +A33 sin

√
B5y +A34 cos

√
B1y

+A35 sin
√
B1y +A36 cos 2

√
B1y +A37 sin 2

√
B1y +A38,

(3.19) φ1 = A39 cos
√
B6y +A40 sin

√
B6y +A41 cos

√
B3y +A42 sin

√
B3y

+A43 cos(
√
B1 −

√
B2)y +A44 cos(

√
B1 +

√
B2)y

+A45 sin(
√
B1 +

√
B2)y +A46 sin(

√
B1 −

√
B2)y +A47 cos

√
B1y

+A48 sin
√
B1y +A49 cos

√
B2y +A50 sin

√
B2y,

(3.20) φ2 = A51 cos
√
B7y +A52 sin

√
B7y +A53 cos

√
B4y +A54 sin

√
B4y

+A55 cos 2
√
B2y +A56 sin 2

√
B2y +A57 sin

√
B2y +A58 cos

√
B2y,

where A’s and B’s are constants given in the Appendix.
Next, the heat and mass transfer rates in terms of Nusselt number and

Sherwood number at the walls respectively are defined as

(3.21) Nu = −
(
∂θ

∂y

)
y=0,1

and Sh = −
(
∂φ

∂y

)
y=0,1

.
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4. Results and discussion

In order to get the physical insight of the problem, velocity, temperature,
concentration, Nusselt number and Sherwood number distributions have been
discussed by assigning numerical values to various parameters obtained in math-
ematical formulation of the problem and the results are shown graphically. In
this analysis us, θs, φs, ut, θt, φt represent steady velocity, steady temperature,
steady concentration, unsteady velocity, unsteady temperature, unsteady con-
centration respectively. Figure 2 shows the influence of Hartmann number (M),
Darcy number (Da), Casson parameter/non-Newtonian parameter (β), and fre-
quency parameter (H), on the velocity distribution. Figure 2a shows that for
a given increase in Hartmann number, there is a decrease in velocity. This is
due to the fact that the retarding forces (called Lorentz forces) generated by the
applied magnetic field act as resistive drag forces opposite to the flow direction
which results a decrease in velocity. Figure 2b depicts the variation of velocity
for different values of Da. It is noticed that the velocity is an increasing func-

a) b)

c) d)

Fig. 2. Velocity distribution for ε = 0.01, t = π/4: a) effect of M when β = 2, Da = 0.5, H = 5,
b) effect of Da when β = 2, H = 5, M = 0.5, c) effect of β when Da = 0.5, H = 5, M = 0.5,

d) effect of H when β = 2, Da = 0.5, M = 0.5.
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tion of Da. Because the linear porous drag force called the Darcian drag force
is inversely proportional to Da (see the last term of Eq. (2.12), i.e., − u

H2Da
)

an increase in permeability of porous regions will increase Da which will act
as the Darcian drag force. Hence, there is an increase in velocity with increase
in Da. From Figs. 2c and 2d, it is clear that the velocity increases with an in-
crease in Casson parameter and frequency parameter. Figure 3 demonstrate the
variation of unsteady velocity for frequency parameter and various values of t.
From Fig. 3a it is noticed that the unsteady velocity profiles exhibit oscillating
character with an increasing frequency parameter. For small values of H the
profiles are almost parabolic in nature. The maximum velocity is shifted to the
boundary layers near the walls. From Fig. 3b, one can observe that the unsteady
velocity profiles oscillate with increasing t.

a) b)

Fig. 3. Unsteady velocity distribution for ε = 0.01, β = 2, M = 0.5, Da = 0.5:
a) effect of H, b) effect of t.

Figure 4 shows the influence of Casson parameter and radiation parameter
on the temperature distribution. Figure 4a shows that for a given increase in
Casson parameter, there is an increase in temperature. Figure 4b depicts the
variation of temperature distribution for different values of radiation parameter.
It is noticed that the temperature is a decreasing function of Rd. The influence
of Eckert number (Ec), Hartmann number (M) and radiation parameter on
steady and unsteady temperature distributions are shown in Figs. 5–7. Figure 5
shows the effect of Ec on steady and unsteady temperature distributions. It
is observed that the steady temperature increases with an increasing Ec. This
increase in temperature may be due to heat created by viscous distribution (see
Fig. 5a). From Fig. 5b it is observed that the unsteady temperature exhibits
oscillating character and oscillations increase with an increasing Ec and the
maximum is shifted to the boundary layers near the walls. From Fig. 6 it is
clear that the steady and unsteady temperatures decrease near the walls with
an increasing M while they increase near the center. Furthermore, the unsteady
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a) b)

Fig. 4. a) Effect of β on temperature distribution when ε = 0.01, M = 0.5, t = π/4, H = 5,
Ec = 0.5, Pr = 0.71, Rd = 2, Da = 0.5, b) effect of Rd on temperature distribution when

ε = 0.01, β = 2, t = π/4, H = 5, M = 0.5, Pr = 0.71, Ec = 0.5, Da = 0.5.

a) b)

Fig. 5. Effect of Ec on temperature distribution when ε = 0.01, β = 2, t = π/4, H = 8,
M = 0.5, Pr = 0.71, Rd = 2, Da = 0.5.

a) b)

Fig. 6. Effect of M on temperature distribution when ε = 0.01, β = 2, t = π/4, H = 8,
Ec = 0.5, Pr = 0.71, Rd = 2, Da = 0.5.
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a) b)

Fig. 7. Effect of Rd on temperature distribution when ε = 0.01, β = 2, t = π/4, H = 5,
M = 0.5, Pr = 0.71, Ec = 0.5, Da = 0.5.

temperature oscillates with an increasing M and the amplitude decreases with an
increasing M. Figure 7 depicts the variation of steady and unsteady temperature
profiles for different values of radiation parameter. It is noticed that the steady
temperature decreases for a given increase in radiation parameter (see Fig. 7a).
From Fig. 7b one can see that the unsteady temperature oscillating with an
increasing Rd and the maximum is shifted to the near the walls. The effect of
t on unsteady temperature distribution is shown in Fig. 8. One can notice that
the unsteady temperature profiles oscillate with increasing t.

Fig. 8. Effect of t on unsteady temperature distribution when ε = 0.01, β = 2,
Rd = 2, H = 5, M = 0.5, Pr = 0.71, Ec = 0.5, Da = 0.5.

Figures 9–11 presents the effects of the chemical reaction parameter (γ), the
Schmidt number (Sc) and the Soret number (Sr) on steady and unsteady con-
centration distributions. Figure 9 shows the effect of γ on steady and unsteady
concentration distributions. It is observed that the steady and unsteady concen-
tration decrease with increasing γ. This is due to fact that for a given increase
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a) b)

Fig. 9. Effect of γ on concentration distribution when ε = 0.01, β = 2, t = π/4, H = 5,
M = 0.5, Pr = 0.71, Ec = 0.5, Da = 0.5, Rd = 2, Sc = 0.65, K1 = 0.001, Sr = 2.

a) b)

Fig. 10. Effect of Sc on concentration distribution when ε = 0.01, β = 2, t = π/4, H = 5,
M = 0.5, Pr = 0.71, Ec = 0.5, Da = 0.5, Rd = 2, γ = 1, β = 2, K1 = 0.001.

a) b)

Fig. 11. Effect of Sr on concentration distribution when ε = 0.01, β = 2, t = π/4, H = 5,
M = 0.5, Pr = 0.71, Ec = 0.5, Da = 0.5, Rd = 2, γ = 1, Sc = 0.65, β = 2, K1 = 0.001.
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in chemical reaction there is a decrease in the concentration boundary layer
because the destructive chemical reaction reduces the solutal boundary layer
thickness and increases the mass transfer. Moreover, the unsteady concentra-
tion exhibits oscillating character and the minimum is shifted to the boundary
layers near the walls (see Fig. 9b). The similar behaviour can be observed from
Figs. 10 and 11 by varying Sc and Sr.

Figure 12 demonstrates the effects of M and Rd on Nusselt number distri-
bution (Nu) against H. From Fig. 12a it is noticed that for a given increase
in Hartmann number, Nu increases at the lower wall while it decreases at the
upper wall. The similar behaviour can be found by varying Rd (see Fig. 12b).
The influence of Sc and Sr on Sherwood number distribution (Sh) against H is
shown in Fig. 13. From this figure one can infer that Sh is an increasing function
of Sc and Sr at the lower wall while it is a decreasing function at the upper wall.

a) b)

Fig. 12. Nusselt number distribution for ε = 0.01, t = π/4, β = 2, Ec = 0.5, Da = 0.5,
Pr = 0.71: a) effect of M when Rd = 2, b) effect of Rd when M = 2.

a) b)

Fig. 13. Sherwood number distribution for ε = 0.01, t = π/4, β = 2, Ec = 0.5, M = 2,
Da = 0.5, Pr = 0.71, Rd = 2, γ = 1, K1 = 0.001: a) effect of Sc when Sr = 2, b) effect of Sr

when Sc = 0.65.
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5. Conclusion

In the present analysis, the pulsating MHD flow of a Casson fluid in a porous
space with thermal radiation, thermal-diffusion, Joule heating and chemical re-
action has been investigated. Analytical solutions are obtained for flow variables.
The main findings are summarized as follows:
• The velocity decreases for a given increasing Hartmann number while it is

increasing with Da and H.
• The temperature distribution increases with an increasing Casson param-

eter while it is decreases with an increasing Rd.
• The concentration distributions in steady and unsteady cases decreases

with an increase in chemical reaction parameter.
• The steady concentration decreases with increasing Sc and Sr while the

unsteady concentration distribution oscillates with increasing Sc and Sr.
• Nusselt number distribution increases with an increasing Rd at the lower

wall while it decreases at the upper wall.
• Sherwood number is a increasing function of Sc and Sr at the lower wall.

Appendix

A1 = −A3,

A2 =
A3(cos

√
B1 − 1)

sin
√
B1

,

A3 = − H2

(1 + 1
β )B1

,

A4 = −A6,

A5 =
A6(cos

√
B2 − 1)

sin
√
B2

,

A6 = − H2

(1 + 1
β )B2

,

A7 = −A10 −A12,

A8 = 1−A9 +A10(1− cos
√
B1)−A11 sin

√
B1

+A12(1− cos 2
√
B1)−A13 sin 2

√
B1,
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A9 = D1 +D2 +D3 +D4 +D5,

A10 =
2M2 Ec PrA1A3

B1(1 + 4
3Rd)

,

A11 =
2M2 Ec PrA2A3

B1(1 + 4
3Rd)

,

A12 = D6 +D7 +D8 +D9,

A13 = D10 +D11,

A14 = −A16 −A17 −A20 −A22 −A24,

A15 =
(

(A16 +A17 +A20 +A22 +A24) cos(
√
B3)−A16 cos(

√
B1 −

√
B2)

−A17 cos(
√
B1 +

√
B2)−A18 sin(

√
B1 +

√
B2)−A19 sin(

√
B1 −

√
B2)

−A20 cos(
√
B1)−A21 sin(

√
B1)−A22 cos(

√
B2)

−A23 sin(
√
B2)−A24

)
/ sin(

√
B3),

A16 = D12 +D13 +D14 +D15,

A17 = D16 +D17 +D18 +D19,

A18 = D20 +D21 +D22 +D23,

A19 = D24 +D25 +D26 +D27,

A20 = − 2M2 Ec PrA1A6(
1 + 4

3Rd
)
(−B1 +B3)

,

A21 = − 2M2 Ec PrA2A6(
1 + 4

3Rd
)
(−B1 +B3)

,

A22 = − 2M2 Ec PrA3A4

(1 + 4
3Rd)(−B2 +B3)

,

A23 = − 2M2 Ec PrA3A5

(1 + 4
3Rd)(−B2 +B3)

,

A24 = −2M2 Ec PrA3A6

(1 + 4
3Rd)(B3)

,

A25 = −A27 −A30 −A31,
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A26 =
(

(A27 +A30 +A31) cos
√
B4 −A27 cos 2

√
B2

−A28 sin 2
√
B2 −A29 sin

√
B2 −A30 cos

√
B2 −A31

)
/ sin

√
B4,

A27 = D28 +D29 +D30 +D31,

A28 = D32 +D33,

A29 = − 2M2 Ec PrA5A6

(1 + 4
3Rd)(B4 −B2)

,

A30 = − 2M2 Ec PrA4A6

(1 + 4
3Rd)(B4 −B2)

,

A31 = D34 +D35 +D36 +D37 +D38,

A32 = −A34 −A36 −A38,

A33 =
(

1 + (A34 +A36 +A38) cos
√
B5 −A34 cos

√
B1 −A35 sin

√
B1

+A36 cos 2
√
B1 −A37 sin 2

√
B1 −A38

)
/ sin

√
B5,

A34 =
A10B1Sc Sr
B5 −B1

,

A35 =
A11B1Sc Sr
B5 −B1

,

A36 =
4A12B1Sc Sr
B5 − 4B1

,

A37 =
4A13B1Sc Sr
B5 − 4B1

,

A38 = D39 +D40,

A39 = −A41 −A43 −A44 −A47 −A49,

A40 =
(

(A41 +A43 +A44 +A47 +A49) cos
√
B6 −A41 cos

√
B3

−A42 sin
√
B3 −A43 cos(

√
B1 −

√
B2)−A44 cos(

√
B1 +

√
B2)

−A45 sin(
√
B1 +

√
B2)−A46 sin(

√
B1 −

√
B2)

−A47 cos
√
B1 −A48 sin

√
B1 −A49 cos

√
B2 −A50 sin

√
B2

)
/ sin

√
B6,

A41 =
ScSrA14B3

−B3 +B6
,
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A42 =
Sc SrA15B3

−B3 +B6
,

A43 =
Sc SrA16(

√
B1 −

√
B2)

2

−(
√
B1 −

√
B2)2 +B6

,

A44 =
Sc SrA17(

√
B1 +

√
B2)

2

−(
√
B1 +

√
B2)2 +B6

,

A45 =
Sc SrA18(

√
B1 +

√
B2)

2

−(
√
B1 +

√
B2)2 +B6

,

A46 =
Sc SrA19(

√
B1 −

√
B2)

2

−(
√
B1 −

√
B2)2 +B6

,

A47 =
Sc SrA20B1

−B1 +B6
,

A48 =
Sc SrA21B1

−B1 +B6
,

A49 =
Sc SrA22B2

−B2 +B6
,

A50 =
Sc SrA23B2

−B2 +B6
,

A51 = −A53 −A55 −A58,

A52 =
(

(A53+A55+A58) cos
√
B7−A53 cos

√
B4−A54 sin

√
B4−A55 cos 2

√
B2

−A56 sin 2
√
B2 −A57 sin

√
B2 −A58 cos

√
B2

)
/ sin

√
B7,

A53 =
A25B4 Sc Sr
B7 −B4

,

A54 =
A26B4 Sc Sr
B7 −B4

,

A55 =
4A27B2 Sc Sr
B7 − 4B2

,

A56 =
4A28B2 Sc Sr
B7 − 4B2

,

A57 =
A29B2 Sc Sr
B7 −B2

,
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A58 =
A30B2 Sc Sr
B7 −B2

, D7 =
(1 + 1

β )Ec PrB1A
2
2

8B1(1 + 4
3Rd)

,

B1 = −
M2 + 1

Da

1 + 1
β

, D8 =
M2 Ec PrA2

1

8B1(1 + 4
3Rd)

,

B2 = −
M2 + 1

Da + iH2

1 + 1
β

, D9 = − M2 Ec PrA2
2

8B1(1 + 4
3Rd)

,

B3 = − iH2 Pr
1 + 4

3Rd
, D10 = −

(1 + 1
β )Ec PrB1A1A2

4B1(1 + 4
3Rd)

,

B4 = − 2iH2 Pr
1 + 4

3Rd
, D11 =

M2 Ec PrA1A2

4B1(1 + 4
3Rd)

,

B5 = −γ Sc, D12 = −
(1 + 1

β )Ec PrA1A4

√
B1

√
B2

(1 + 4
3Rd)(−(

√
B1 −

√
B2)2 +B3)

,

B6 = −(iH2 Sc + γ Sc), D13 = −
(1 + 1

β )Ec PrA2A5

√
B1

√
B2

(1 + 4
3Rd)(−(

√
B1 −

√
B2)2 +B3)

,

B7 = −(2iH2 Sc + γ Sc), D14 = − M2 Ec PrA1A4

(1 + 4
3Rd)(−(

√
B1 −

√
B2)2 +B3)

,

D1 = −
(1 + 1

β )Ec PrB1A
2
1

4(1 + 4
3Rd)

, D15 = − M2 Ec PrA2A5

(1 + 4
3Rd)(−(

√
B1 −

√
B2)2 +B3)

,

D2 = −
(1 + 1

β )Ec PrB1A
2
2

4(1 + 4
3Rd)

, D16 =
(1 + 1

β )Ec PrA1A4

√
B1

√
B2

(1 + 4
3Rd)(−(

√
B1 +

√
B2)2 +B3)

,

D3 = −M2 Ec PrA2
1

4(1 + 4
3Rd)

, D17 = −
(1 + 1

β )Ec PrA2A5

√
B1

√
B2

(1 + 4
3Rd)(−(

√
B1 +

√
B2)2 +B3)

,

D4 = −M2 Ec PrA2
2

4(1 + 4
3Rd)

, D18 = − M2 Ec PrA1A4

(1 + 4
3Rd)(−(

√
B1 +

√
B2)2 +B3)

,

D5 = −M2 Ec PrA2
3

2(1 + 4
3Rd)

, D19 =
M2 Ec PrA2A5

(1 + 4
3Rd)(−(

√
B1 +

√
B2)2 +B3)

,

D6 = −
(1 + 1

β )Ec PrB1A
2
1

8B1(1 + 4
3Rd)

, D20 =
(1 + 1

β )Ec PrA1A5

√
B1

√
B2

(1 + 4
3Rd)(−(

√
B1 +

√
B2)2 +B3)

,
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D21 =
(1 + 1

β )Ec PrA2A4

√
B1

√
B2

(1 + 4
3Rd)(−(

√
B1 +

√
B2)2 +B3)

, D31 =
M2 Ec PrA2

5

2(1 + 4
3Rd)(B4 − 4B2)

,

D22 = − M2 Ec PrA1A5

(1 + 4
3Rd)(−(

√
B1 +

√
B2)2 +B3)

, D32 =
(1 + 1

β )Ec PrA4A5B2

(1 + 4
3Rd)(B4 − 4B2)

,

D23 = − M2 Ec PrA2A4

(1 + 4
3Rd)(−(

√
B1 +

√
B2)2 +B3)

, D33 =
M2 Ec PrA4A5

(1 + 4
3Rd)(B4 − 4B2)

,

D24 =
(1 + 1

β )Ec PrA1A5

√
B1

√
B2

(1 + 4
3Rd)(−(

√
B1 −

√
B2)2 +B3)

, D34 = −
(1 + 1

β )Ec PrA2
4B2

2B4(1 + 4
3Rd)

,

D25 = −
(1 + 1

β )Ec PrA2A4

√
B1

√
B2

(1 + 4
3Rd)(−(

√
B1 −

√
B2)2 +B3)

, D35 = −
(1 + 1

β )Ec PrA2
5B2

2B4(1 + 4
3Rd)

,

D26 =
M2 Ec PrA1A5

(1 + 4
3Rd)(−(

√
B1 −

√
B2)2 +B3)

, D36 = − M2 Ec PrA2
4

2B4(1 + 4
3Rd)

,

D27 = − M2 Ec PrA2A4

(1 + 4
3Rd)(−(

√
B1 −

√
B2)2 +B3)

, D37 = − M2 Ec PrA2
5

2B4(1 + 4
3Rd)

,

D28 =
(1 + 1

β )Ec PrA2
4B2

2(1 + 4
3Rd)(B4 − 4B2)

, D38 = − M2 Ec PrA2
6

B4(1 + 4
3Rd)

,

D29 = −
(1 + 1

β )Ec PrA2
5B2

2(1 + 4
3Rd)(B4 − 4B2)

, D39 = −2A9 Sc Sr
B5

,

D30 = − M2 Ec PrA2
4

2(1 + 4
3Rd)(B4 − 4B2)

, D40 =
K1 Sc
B5

.
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