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The work concerns the global elastic buckling problem of a thin-walled T-frame with con-
sideration of the shear effect. A novel approach was used to account for this effect namely
the non-linear shear deformation theory which gives as a result the shear deformation func-
tion describing the behaviour of the beam cross-section. This thin-walled T-frame consists of
horizontal beam and vertical column made of the same standard H-beams. The shape of this
standard H-beam and the dimensionless deformation function of the plane cross-section, being
the result of the shear effect, are analytical described. The buckling problem of the frame is
analytically formulated and solved. The critical loads of exemplary beams are analytically de-
termined. Moreover, a numerical FEM model of the frame is elaborated and the critical loads of
exemplary frames are determined. Consequently, the research results obtained by both methods
are compared and the advantages of the proposed approach is discussed.

Keywords: elastic buckling; frame; H-beam; thin-walled beam; shear effect

1. Introduction

Thin-walled beams used in the 20th century are also commonly used today for example
in vehicles and building steel structures. They are parts of frames containing from several
to several dozen of beams. Particular beams can be subjected to different types of load
like compression, twisting or bending but usually in each beam a complex state of stress
is present. For this reason an effective tool is needed to analyse the state of stress in the
beam, the phenomena in the junction between them but also the influence of individual
beams on each other. Detailed description of the strength and stability problems of thin-
walled beams and selected structures is provided by Trahair et al. [1]. Authors described
in detail problems related to tension and compression members, local buckling of thin-
plate elements, bending and lateral buckling of beams, beam-columns, frames, joints and
torsion members.

The application of Generalised Beam Theory (GBT) for the analyses of thin-walled
frames is presented by Basaglia et al. [2]. The buckling analysis of frames made of U-
and I-sections is discussed including problems related to joints. These considerations are
continued in the paper by Basaglia et al. [3]. Here the local and distortional buckling
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are included. Exemplary calculations are made for L-shaped and portal frames made
of open cross-section beams. The possibility of application of GBT-based finite element
calculations for analysis of frames made of thin-walled members of different cross-sections
is reported by Camotim et al. [4]. The analyses are broadened to the non-linear range
and the results compared with these given by the commercial ANSYS code. The possible
future development of the proposed method is discussed.

The behaviour of frames made of thin-walled members is influenced by the behaviour
of its individual elements – a single beam. For this reason, an optimal shape of the
cross-section is sought that will provide the highest stiffness and resistance to buckling.
Examples of atypical cross-sections are shown by Magnucka-Blandzi and Magnucki [5].
Different types of channel beams are considered. Analytical formula for critical stress is
obtained followed by the optimization process showing the relation between the geometri-
cal dimensions of the cross-section and the critical stress. For selected beam experimental
results are shown.

Rectangular frames are parts of vehicle structures and thus loaded with combined
load, mainly by bending and torsional moments. The analytical description of global
buckling of such frame made of thin-walled open cross-sections is described by Magnucki
and Milecki [6]. The critical values of forces loading the frame in its plane are determined.
The obtained results are compared with these from the finite element method. Stable
and unstable regions for the structure are defined on plots.

Large frames in the form of spatial structures are used in construction engineering
as a basis of e.g. warehouses. The behaviour of such large frames is analysed by Nagy
et al. [7]. Three variants of frame have been modelled that is pure frame, frame with
the roof made of trapezoidal skin and with the roof made of sandwich panels. Numer-
ical analyses are performed and differences in the behaviour of these three frames are
discussed. The buckling length coefficient for frames are calculated by Krystosik [8] us-
ing three different approaches. The author concluded that the recommendations of the
American and European codes, due to assumed simplifications, provide inaccurate results
when compared to the finite element approach. Thin-walled frames are also analysed by
Zhang et al. [9]. A new approach is proposed in which the failure criteria is based on
the sum of the structural exponential strain energy density. The buckling of frames and
arches made of I cross-sections is investigated by Liu et al. [10]. Analytical approach
based on virtual work is applied to determine the critical loads for different geometries of
structures. Different formulations of joint between particular beams are considered. The
effectiveness of proposed solutions is proved by comparison of the results with the finite
element method.

One of the most popular shapes of the beam is an H-section since it is the most
effective one when bending load is considered. The H-section beam under unequal end
bending moments is investigated by Giżejowski et al. [11]. The influence of the slenderness
of the element and moment distribution on the critical state is analysed analytically. Two
examples of frames made of H-section and circular section are considered loaded with a
static and dynamic load. Stability of columns and beams with H and box cross-sections
are analysed by Zhou et al. [12]. In the paper authors propose a beam-column element
with plastic hinge included giving the possibility to analyse global and local buckling.
Only one element is needed to predict the load bearing capacity of columns and frames.
The plane frames made of I-sections are investigated analytically by Wen et al. [13]. A
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new comprehensive approach based of the potential energy is proposed. Different formulas
are used to compare their effectiveness in determining the deformation of frames after
the loss of stability. Numerical approach to the stability analysis of I-beam is presented
by Yang et al. [14]. One dimensional finite element is proposed to solve local and global
buckling problems.

A crucial meaning for the load carrying capacity of frames has the connection between
particular beams-columns. Such connection in the form of K-shaped braced shear panel
is investigated in the paper by Xiang et al. [15]. The proposed new connection system
is tested in laboratory under seismic load and its possibility to dissipate the energy is
analysed. Experimental tests of frames are also described by J̊uza et al. [16]. Number
of tests have been carried out for portal frames made of cold-rolled hollow sections. The
influence of the material nonlinearity on the deflection of frames has been shown. The
results are also compared with these from the finite element analyses.

If the frame is composed of beams the thickness of which is not small or beams are
short the shear stresses play the significant role. The analysis of these stresses is especially
important when multilayered beams are considered. An example of research in this area
is the one by Magnucki [17]. Author compares the classical zig-zag theory with the new
proposal of nonlinear shear deformation theory. It was shown that the stress distribution
differs significantly for models based on both theories. The proposed approach refines
the shear effect in multilayered beams. The same theory was applied to analyse the
vibrations of wide-flange H-beam in the paper by Magnucki [18]. The shear coefficient is
derived analytically which refines the formula for natural frequencies. It was shown that
the coefficient should be taken into account for short beams and its application reduces
the value of natural frequency.

In the present paper the research into the application of the nonlinear shear defor-
mation theory described by Magnucki [17, 18] is continued. Here the theory is applied
to a thin-walled T-frame, shown in Fig. 1a, made of the horizontal H-beam of the length
L1 and the vertical H-beam-column of the length L2 stiff connected together. The joint
connecting the two beams of the T-frame is shown in Fig. 1b where the dimensions of
the H-section are presented that is the size of the web – h, and the size of the flange – b.

The main goal of the paper are analytical and numerical (FEM) studies of elastic
global buckling problem of the T-frame under the action of force F applied along the
central line of the column.

2. Analytical model of the H-beam

The detailed cross section of the H-beam is shown in Fig. 2. The thickness of the
flange equals tf and the thickness of the web b0. The radius between particular parts of
the cross-section is equal to r.

The analytical description of this cross section is formulated with consideration of the
following dimensionless quantities: η = y/b – coordinate, β0 = b0/b, χf = tf/b, ρ = r/b
– sizes. Thus, dimensionless widths w̄ of successive parts:

� the first interval of the upper part −1/2 ≤ η ≤ −(ρ+ β0/2)

w̄
(up)
1 (η) =

w
(up)
1 (η)

b
= 2χf (1)

3

PRE-P
ROOF P

UBLIC
ATIO

N

PR
E

-PR
O

O
F PU

B
L

IC
A

T
IO

N
 E

N
G

IN
E

E
R

IN
G

 T
R

A
N

SA
C

T
IO

N
S 



Fig. 1. Scheme of the thin-walled T-frame loaded with force F

Fig. 2. Scheme of the H-beam cross section

� the second interval of the upper part −(ρ+ β0/2) ≤ η ≤ −β0/2

w̄
(up)
2 (η) =

w
(up)
2 (η)

b
= 2

{
χf + ρ−

√
−
(
η +

1

2
β0

)(
η + 2ρ+

1

2
β0

)}
(2)
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� the middle part −β0/2 ≤ η ≤ β0/2

w̄(mp)(η) =
w(mp)(η)

b
=
h

b
(3)

� the second interval of the lower part β0/2 ≤ η ≤ ρ+ β0/2

w̄
(lp)
2 (η) =

w
(lp)
2 (η)

b
= 2

{
χf + ρ−

√(
η − 1

2
β0

)(
−η + 2ρ+

1

2
β0

)}
(4)

� the first interval of the lower part ρ+ β0/2 ≤ η ≤ 1/2

w̄
(lp)
1 (η) =

w
(lp)
1 (η)

b
= 2χf (5)

The dimensionless widths defined above allows to calculate geometrical parameters of the
cross-section that is the first moment, necessary to calculated the shears stress.

The scheme of a planar cross section deformation of this H-beam after bending-
buckling is graphically presented in Fig. 3.

Fig. 3. Scheme of a planar cross section deformation of the H-beam

The longitudinal displacements u based on the scheme (Fig. 3) and consequently
normal εx and shear γxy strains as well as normal σx and shear τxy stresses in successive
parts are as follows:
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� the first interval of the upper part −1/2 ≤ η ≤ −(ρ+ β0/2)

u
(up)
1 (x, η) = −b

[
η
dv

dx
− f

(up)
d1 (η)ψ(x)

]
(6)

ε
(up)
x1 (x, η) = −b

[
η
d2v

dx2
− f

(up)
d1 (η)

dψ

dx

]
(7)

γ
(up)
xy1 (x, η) =

df
(up)
d1

dη
ψ(x) (8)

σ
(up)
x1 (x, η) = Eε

(up)
x1 (x, η) (9)

τ
(up)
xy1 (x, η) =

E

2(1 + ν)
γ
(up)
xy1 (x, η) (10)

� the second interval of the upper part −(ρ+ β0/2) ≤ η ≤ −β0/2

u
(up)
2 (x, η) = −b

[
η
dv

dx
− f

(up)
d2 (η)ψ(x)

]
(11)

ε
(up)
x2 (x, η) = −b

[
η
d2v

dx2
− f

(up)
d2 (η)

dψ

dx

]
(12)

γ
(up)
xy2 (x, η) =

df
(up)
d2

dη
ψ(x) (13)

σ
(up)
x2 (x, η) = Eε

(up)
x2 (x, η) (14)

τ
(up)
xy2 (x, η) =

E

2(1 + ν)
γ
(up)
xy2 (x, η) (15)

� the middle part −β0/2 ≤ η ≤ β0/2

u(mp)(x, η) = −b
[
η
dv

dx
− f

(mp)
d (η)ψ(x)

]
(16)

ε(mp)x (x, η) = −b
[
η
d2v

dx2
− f

(mp)
d (η)

dψ

dx

]
(17)

γ(mp)xy (x, η) =
df

(mp)
d

dη
ψ(x) (18)

σ(mp)
x (x, η) = Eε(mp)x (x, η) (19)

τ (mp)xy (x, η) =
E

2(1 + ν)
γ(mp)xy (x, η) (20)
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� the second interval of the lower part β0/2 ≤ η ≤ ρ+ β0/2

u
(lp)
2 (x, η) = −b

[
η
dv

dx
− f

(lp)
d2 (η)ψ(x)

]
(21)

ε
(lp)
x2 (x, η) = −b

[
η
d2v

dx2
− f

(lp)
d2 (η)

dψ

dx

]
(22)

γ
(lp)
xy2(x, η) =

df
(lp)
d2

dη
ψ(x) (23)

σ
(lp)
x2 (x, η) = Eε

(lp)
x2 (x, η) (24)

τ
(lp)
xy2 (x, η) =

E

2(1 + ν)
γ
(lp)
xy2(x, η) (25)

� the first interval of the lower part ρ+ β0/2 ≤ η ≤ 1/2

u
(lp)
1 (x, η) = −b

[
η
dv

dx
− f

(lp)
d1 (η)ψ(x)

]
(26)

ε
(lp)
x1 (x, η) = −b

[
η
d2v

dx2
− f

(lp)
d1 (η)

dψ

dx

]
(27)

γ
(lp)
xy1(x, η) =

df
(lp)
d1

dη
ψ(x) (28)

σ
(lp)
x1 (x, η) = Eε

(lp)
x1 (x, η) (29)

τ
(lp)
xy1 (x, η) =

E

2(1 + ν)
γ
(lp)
xy1(x, η) (30)

where f
(up)
d1 (η), f

(up)
d2 (η), f

(mp)
d (η), f

(lp)
d2 (η), f

(lp)
d1 (η) are unknown dimensionless deformation

functions, v(x) is deflection function, u0u is the longitudinal displacement of the outside
surfaces of the beam, ψ(x) = u0u/h is dimensionless shear effect function, E is Young’s
modulus and ν is Poisson’s ratio.

The unknown dimensionless deformation functions are analytically derived in succes-
sive parts and presented below. They are obtained by equating shear stresses formulated
above with Zhuravsky’s classical shear stress formula and taking into account the first
moment of the cross-section of the beam. Details of this procedure can be found in papers
[17] and [18]. Thus, for particular parts of the cross-section there is:

� the first interval of the upper part −1/2 ≤ η ≤ −(ρ+ β0/2)

f
(up)
d1 (η) = −Cf +

1

8

(
1 − 4

3
η2
)
η (31)

� the second interval of the upper part −(ρ+ β0/2) ≤ η ≤ −β0/2

f
(up)
d2 (η) = −Cup − Cp2 +

η∫
−(ρ+β0/2)

S̄
(up)
z2 (η)

w̄
(up)
2 (η)

dη (32)
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� the middle part −β0/2 ≤ η ≤ β0/2

f
(mp)
d (η) =

1

24

(
24
b

h
Csz2 + 3β2

0 − 4η2
)
η (33)

� the second interval of the lower part β0/2 ≤ η ≤ ρ+ β0/2

f
(lp)
d2 (η) = Cp2 +

η∫
β0/2

S̄
(lp)
z2 (η)

w̄
(lp)
2 (η)

dη (34)

� the first interval of the lower part ρ+ β0/2 ≤ η ≤ 1/2

f
(lp)
d1 (η) = Cf +

1

8

(
1 − 4

3
η2
)
η (35)

where dimensionless coefficients:

Csz2 =
1

4

[
1 − 4

(
ρ+

1

2
β2
0

)]
χf +

−β0/2∫
−(ρ+β0/2)

w̄up2 (η)ηdη,

Cp2 =
1

24

(
12
b

h
Csz2 + β2

0

)
β0, Cp1 = Cp2 +

ρ+β0/2∫
β0/2

S̄
(lp)
z2 (η)

w̄
(lp)
2 (η)

dη,

Cup =

−β0/2∫
−(ρ+β0/2)

S̄
(up)
z2 (η)

w̄
(up)
2 (η)

dη, Cf = Cp1 −
1

8

[
1 − 4

3

(
ρ+

1

2
β0

)2
](

ρ+
1

2
β0

)
,

and dimensionless functions

S̄
(up)
z2 (η) =

1

4

[
1 − 4

(
ρ+

1

2
β0

)2
]
χf +

η∫
−(ρ+β0/2)

w̄
(up)
2 (η)ηdη,

S̄
(lp)
z2 (η) = Csz2 +

1

4

(
β2
0 − 4η2

)
(χf + ρ) +

η∫
−(ρ+β0/2)

w̄
(up)
2 (η)ηdη.

These dimensionless deformation functions satisfy the continuity conditions between
the successive parts of the cross section.

To solve the stability problem the principle of stationary total potential energy will
be used in the form δ(Uεγ −W ) = 0 (for details see [17]). The elastic strain energy Uεγ
of the horizontal and vertical beam have been defined as well as the work W of external
load. After substituting them into the principle of stationary total potential energy and
after simply transformation, the system of two differential equations of equilibrium for
this H-beam is obtained in the following form:

J̄z
d2v

dx2
− Cvψ

dψ

dx
= −Mb(x)

Eb3h
, (36)

8

PRE-P
ROOF P

UBLIC
ATIO

N

PR
E

-PR
O

O
F PU

B
L

IC
A

T
IO

N
 E

N
G

IN
E

E
R

IN
G

 T
R

A
N

SA
C

T
IO

N
S 



Cvψ
d3v

dx3
− Cψψ

d2ψ

dx2
+ Cψ

ψ(x)

bh
= 0, (37)

where dimensionless coefficients are as follows:

J̄z =
1

12
β3
0 +

1

6

[
1 − 8

(
ρ+

1

2
β0

)3
]
b

h
χf + 2

b

h

ρ+β0/2∫
β0/2

η2w̄
(lp)
2 (η)dη,

Cvψ =

β0/2∫
−β0/2

ηf
(mp)
d (η)dη + 2

b

h


ρ+β0/2∫
β0/2

ηf
(lp)
d2 (η)w̄

(lp)
2 (η)dη + 2χf

1/2∫
ρ+β0/2

ηf
(lp)
d1 (η)dη

 ,

Cψψ =

β0/2∫
−β0/2

[
f
(mp)
d (η)

]2
dη + 2

b

h

{ ρ+β0/2∫
β0/2

[
f
(lp)
d2 (η)

]2
w̄

(lp)
2 (η)dη+

+ 2χf

1/2∫
ρ+β0/2

[
f
(lp)
d1 (η)

]2
dη

}
,

Cψ =
1

2(1 + ν)

{ β0/2∫
−β0/2

[
b

h
Csz2 +

1

8

(
β2
0 − 4η2

)]2
dη + 2

b

h

ρ+β0/2∫
β0/2

[
S̄
(lp)
z2 (η)

]2
w̄

(lp)
2 (η)

dη+

+
χf
16

b

h

1/2∫
ρ+β0/2

(
1 − 4η2

)2
dη

}

These two differential equations of equilibrium (36) and (37) are basic in the analysis of
the T-frame buckling problem.

3. Analytical model of the thin-walled T-frame taking into ac-
count the shear effect

3.1. Pre-buckling state

The T-frame is statically indeterminate structure. The disconnected beams with the
interaction force Fc are shown in Fig. 4. The detailed scheme of the horizontal beam with
the load is shown in Fig. 5. The bending moment based on this scheme is as follows

Mb(ξ1) =
1

2
ξ1 (F − Fc) bλ1, (38)

where ξ1 = x1/L1 is the dimensionless coordinate (0 ≤ ξ1 ≤ 1/2) and λ1 = L1/b is the
relative length of the horizontal beam.
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Fig. 4. Scheme of the interaction force Fc of two beams

Fig. 5. Scheme of the horizontal beam with the load

Thus, the equations of equilibrium (36) and (37) in the dimensionless coordinate ξ1,
with consideration of the expression (38), are in the following form

J̄z
d2v

dξ21
− CvψL1

dψ11

dξ1
= −1

2
ξ1λ

3
1

F − Fc
Eh

, (39)

Cvψ
d3v

dξ31
− CψψL1

d2ψ11

dξ21
+ Cψλ

2
1L1

b

h
ψ11(ξ1) = 0, (40)

These equations (39) and (40), after simply transformation, are reduced to one equation
in the form:

d2ψ11

dξ21
− α2λ21

b

h
ψ11(ξ1) = −1

2
λ21

Cvψ
J̄zCψψ − C2

vψ

F − Fc
Ebh

(41)
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where α =

√
J̄zCψ

J̄zCψψ − C2
vψ

is dimensionless coefficient. The solution of this equation (41)

are following functions:

ψ11(ξ1) =
1

2

1 −
cosh

(
αλ1

√
b/hξ1

)
cosh

(
0.5αλ1

√
b/h
)
 Cvψ
J̄zCψ

F − Fc
Eb2

(42)

This function satisfy the conditions: dψ1/dξ1
∣∣
0

= 0 and ψ1(1/2) = 0. Substituting this
function (42) into the equation (39), after integration and simply transformation, one
obtains the beam deflection line

v(ξ1) =

[(
ξ1 −

4

3
ξ31

)
b

h
+

8

λ21
fvψ(ξ1)

C2
vψ

J̄zCψ

]
λ31

16J̄z

F − Fc
Eb

(43)

where fvψ(ξ1) = ξ1 −
sinh

(
αλ1

√
b/hξ1

)
αλ1

√
b/h cosh

(
0.5αλ1

√
b/h
) . This function (61) satisfy the con-

ditions: dv/dξ1
∣∣
1/2

= 0 and v(0) = 0. Thus, the maximum deflection of the horizontal

beam is as follows

v1 = (1 + Cse1)
λ31

48J̄z

F − Fc
Eh

(44)

where, the dimensionless shear coefficient

Cse1 =
12

λ21

h

b

[
1 − 2

αλ1

√
h

b
tanh

(
1

2
αλ1

√
b

h

)]
C2
vψ

J̄zCψ
. (45)

The shortening of the vertical H-beam-column under action of the force Fc (Fig. 4) is as
follows

∆L2 =
Fcλ2
EĀh

(46)

where Ā = β0 + 2

{[
1 − 2

(
ρ+

1

2
β0

)]
χf +

ρ+β0/2∫
β0/2

w̄
(lp)
2 (η)dη

}
b

h
is the dimensionless area

cross-section, λ2 = L2/b is the relative length of the beam-column.
Based on the condition v1 = ∆L2, that the deflection of the horizontal beam is

consistent with the shortening of the beam-column, one obtains the force

Fc =
(1 + Cse1)Āλ

3
1

48J̄zλ2 + (1 + Cse1)Āλ31
F. (47)

3.2. Buckling state

The form of the horizontal H-beam bending line of the T-frame after its buckling
is shown in Fig. 6. The bending moment, based on this scheme, in the dimensionless
coordinate ξ1 = x1/L1 for the first interval (0 ≤ ξ1 ≤ 1/2), is as follows

Mb(ξ1) = −ξ1M0, (48)
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Fig. 6. Scheme of the deflection line of the horizontal H-beam

where M0 is the moment of the joint connecting of two beams.
Therefore, the equation of equilibrium (36) in the dimensionless coordinate ξ1, with

consideration of the expression (48), is in the following form

J̄z
d2v

dξ21
− CvψL1

dψ12

dξ1
= ξ1λ

2
1

M0

Ebh
, (49)

However, the equation (37) is of the form (40) with the dimensionless function ψ12(ξ1).
Solving these two equations (49) and (40), after simply transformation, one obtains the
dimensionless function

ψ12(ξ1) = −

1 −
cosh

(
αλ1

√
b/hξ1

)
cosh

(
0.5αλ1

√
b/h
)
 Cvψ
J̄zCψ

1

λ1

M0

Eb3
(50)

and the rotation angle of the center of the deflection line

θ0 = (1 + Cse1)
λ1

12J̄z

b

h

M0

Eb3
, (51)

where Cse1 is the dimensionless shear coefficient consistent with the expression (45).
The buckling line form of the vertical H-beam-column is shown in Fig. 7. The bending

moment, based on this scheme, in the dimensionless coordinate, is as follows

Mb(ξ2) = −(1 − ξ2)M0 + Fcv(ξ2), (52)

where ξ2 = x2/L2 is the dimensionless coordinate (0 ≤ ξ2 ≤ 1), λ2 = L2/b is the relative
length of the vertical beam-column.

Consequently, the equations of equilibrium (36) and (37) in the dimensionless coordi-
nate ξ2, with consideration of the bending moment (52), are in the following form

J̄z
d2v

dξ22
− CvψL2

dψ2

dξ2
= [(1 − ξ2)M0 − Fcv(ξ2)]λ

2
2

1

Ebh
, (53)

Cvψ
d3v

dξ32
− CψψL12

d2ψ2

dξ22
+ Cψλ

2
2L2

b

h
ψ2(ξ2) = 0. (54)

These two differential equations, after simply transformations, are reduced to one the
fourth order differential equation in the following form

d4v

dξ42
− k1

d2v

dξ22
− k2v(ξ2) = −(1 − ξ2)α

2λ
4
2

J̄z

(
b

h

)2
M0

Eb2
, (55)
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Fig. 7. Scheme buckling line form of the vertical H-beam-column

where k1 = α2λ22
b

h

(
1 − Cvψ

J̄zCψ
F̄c

)
and k2 = α2λ

4
2

J̄z

(
b

h

)2

F̄c are dimensionless coefficients

and F̄c = Fc/Eb
2 is dimensionless force.

Solving this equation, taking into account the boundary conditions v(0) = v(1) = 0,
one obtains the buckling line of the vertical beam-column in the form

v(ξ2) =

{
1 − ξ2 −

sin [(1 − ξ2)p]

sin(p)

}
1

F̄c

M0

Eb2
(56)

where p =
1√
2

√
−k1 +

√
k21 + 4k2 is the dimensionless coefficient. Consequently, the

rotation angle at the beginning of this line (ξ2 = 0) is as follows

θ0 =
dv

L2dξ2

∣∣∣∣
0

=

[
p

tan(p)
− 1

]
1

F̄c

1

λ2

M0

Eb3
. (57)

By equating rotation angles (51) and (57) one obtains the algebraic equation

(1 + Cse1)
λ1
12

λ2
J̄z

b

h
F̄c + 1 − p

tan(p)
= 0. (58)

Based on this equation, the dimensionless critical force F̄c,CR for the vertical beam-column
only is determined, and consequently taking into account the expression (47) one obtains
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the dimensionless critical force for the whole frame

F̄CR =

[
1 +

48J̄zλ2
(1 + Cse1)Āλ31

]
F̄c,CR. (59)

4. Analytical model of the thin-walled T-frame neglecting shear
effect

This presented frame model is a simplification of the model presented in Section 3
and is developed on the basis of the Bernoulli-Euler beam theory.

4.1. Pre-buckling state

The equation (39), describing the horizontal beam bending in the first interval (0 ≤
ξ1 ≤ 1/2) (Fig. 5), without the dimensionless shear effect function ψ11(ξ1), is in the
following form

J̄z
d2v

dξ21
= −1

2
ξ1λ

3
1

F (o) − F
(o)
c

Eh
, (60)

where: the superscript (o) in the forces refers to the variant without the shear effect.
After integrating this equation twice and taking into account the following conditions:
v(0) = 0 and dv/dξ1|1/2 = 0, one obtains the deflection line in the form

v (ξ1) =
(
3 − 4ξ21

)
ξ1

λ31
48J̄z

F (o) − F
(o)
c

Eh
. (61)

Thus, the maximum deflection of this beam is as follows

v1 = v

(
1

2

)
=

λ31
48J̄z

F (o) − F
(o)
c

Eh
. (62)

It is easy to see that this expression is the same as (44) for Cse1 = 0 – omitted the shear
effect.

The shortening of the vertical H-beam-column under action of the force (Fig. 5) is
in the form – the expression (46). Based on the condition v1 = ∆L2, one obtains the

relationship between forces F
(o)
c and F (o) in forms:

F (o)
c =

Āλ31
48J̄zλ2 + Āλ31

F (o), (63)

or

F (o) =

(
1 +

48J̄zλ2
Āλ31

)
F (o)
c . (64)

It is easy to see that the expression (63) is the same as (47) for Cse1 = 0 – omitted the
shear effect.
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4.2. Buckling state

Taking into account the Fig. 6, and the equation (49), without the dimensionless shear
effect function ψ12 (ξ1), is in the following form

J̄z
d2v

dξ21
= ξ1λ

2
1

M
(o)
0

Ebh
. (65)

Integrating this equation twice and taking into account the conditions: v(0) = 0 and
v(1/2) = 0, one obtains the horizontal beam deflection line in the form

v (ξ1) = −
(
1 − 4ξ21

)
ξ1

λ21
24J̄z

M
(o)
0

Eb2h
, (66)

and consequently, the slope of this beam deflection line is as follows

dv

L1dξ1
=
(
12ξ21 − 1

) λ1
24J̄z

M
(o)
0

Eb2h
. (67)

Thus, the rotation angle of the center of the deflection line is as follows

θ0 =
dv

L1dξ1

∣∣∣∣
1/2

=
λ1

12J̄z

1

h
M̄

(o)
0 , (68)

where M̄
(o)
0 = M

(o)
0 /Eb2 is dimensionless moment. It is easy to see that this expression

is the same as (51) for Cse1 = 0 – omitted the shear effect.
Taking into account the Fig. 7, and the equation (53), without the dimensionless shear

effect function ψ2 (ξ2), after simply transformation is in the following form

d2v

dξ22
+
λ22
J̄z

b

h
F̄ (o)
c v (ξ2) = (1 − ξ2)

λ22
J̄z

b

h
M̄

(o)
0 , (69)

where F̄
(o)
c = F

(o)
c /Eb2 is dimensionless force. Solving this second order differential

equation, taking into account two boundary conditions v(0) = v(1) = 0, after simply
transformation, one obtains the buckling line of the vertical beam-column in the form

v (ξ2) =

{
1 − ξ2 −

sin
[
(1 − ξ2) p

(o)
]

sin (p(o))

}
M̄

(o)
0

F̄
(o)
c

, (70)

where p(o) = λ2

√
b

h

F̄
(o)
c

J̄z
is dimensionless coefficient.

The slope of this buckling line is as follows

dv

L2dξ2
=

{
−1 + fCR

cos
[
(1 − ξ2) p

(o)
]

sin (p(o))

}
M̄

(o)
0

L2F̄
(o)
c

. (71)

Thus, the rotation angle at the beginning of this buckling line is as follows

θ0 =
dv

L2dξ1

∣∣∣∣
0

=

[
p(o)

tan (p(o))
− 1

]
M̄

(o)
0

L2F̄
(o)
c

. (72)
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By equating rotations angles (68) and (72) one obtains the algebraic equation

λ1λ2
12J̄z

b

h
F̄

(o)
c,CR + 1 − p(o)

tan (p(o))
= 0. (73)

Based on this equation, the dimensionless critical force F
(o)
c,CR for the vertical beam-column

is determined, and in accordance with the expression (64) one obtains the dimensionless
critical force for the T-frame without shear effect

F̄
(o)
CR =

(
1 +

48J̄zλ2
Āλ31

)
F̄

(o)
c,CR. (74)

It is easy to see that this expression is the same as (59) for Cse1 = 0 – omitted the
shear effect.

5. Analytical studies of selected T-frames

Example analytical studies are carried out for thin-walled T-frame made of the hor-
izontal beam of relative lengths λ1 = 10, 15, 20, 30, 40 and the vertical beam-column of
relative length λ2 = 40. Sizes of three standard H-beams are shown in Table 1.

Table 1. Sizes of three selected standard H-beams

Sizes h [mm] b [mm] b0 [mm] tf [mm] r [mm]

H-300 300 300 11.0 19.0 27.0

H-400 400 300 13.5 24.0 27.0

H-500 500 300 14.5 28.0 27.0

Values of dimensionless critical forces calculated on the basis of the equation (58) and
the expression (59) for the case of shear effect taking into accound and equation (73) and
expression (74) neglecting this effect are presented in Tables 2, 3 and 4.

Table 2. Critical forces of T-frame made of standard H-300 beams

λ1 10 15 20 30 40

104F̄c,CR 1.24240 1.22063 1.19980 1.16123 1.12664

104F̄
(o)
c,CR 1.28132 1.25771 1.23422 1.19230 1.15505

104F̄CR 1.39063 1.26442 1.21805 1.16648 1.12880

104F̄
(o)
CR 1.43833 1.30273 1.25312 1.19771 1.15726

By comparing the values of critical forces determined analytically with and without
taking into account the shear effect, it is easy to see that the shear effect reduces the
values of critical forces. Differences between these values of critical forces are specified in
Table 5.

Moreover, these results of the exemplary calculations are graphically presented in the
next section and compared with the results of FE analyses.

16



Table 3. Critical forces of T-frame made of standard H-400 beams

λ1 10 15 20 30 40

104F̄c,CR 1.55404 1.52748 1.50195 1.45453 1.41189

104F̄
(o)
c,CR 1.61894 1.58832 1.55942 1.50646 1.45940

104F̄CR 1.72912 1.57947 1.52337 1.46080 1.41446

104F̄
(o)
CR 1.80787 1.64324 1.58217 1.51297 1.46206

Table 4. Critical forces of T-frame made of standard H-500 beams

λ1 10 15 20 30 40

104F̄c,CR 1.79638 1.76636 1.73741 1.68347 1.63484

104F̄
(o)
c,CR 1.88901 1.85329 1.81957 1.75777 1.70286

104F̄CR 1.99066 1.82430 1.76165 1.69048 1.63777

104F̄
(o)
CR 2.10220 1.91526 1.84523 1.76512 1.70586

Table 5. Differences between the values of critical forces with and without the shear effect

λ1 10 15 20 30 40

∆F̄
(H−300)
CR % 3.4 3.0 2.9 2.7 2.5

∆F̄
(H−400)
CR % 4.6 4.0 3.9 3.6 3.4

∆F̄
(H−500)
CR % 5.6 5.0 4.7 4.4 4.2

6. Numerical (FEM) studies of selected T-frames

As a comparative study a finite element analysis has been performed. A 3D model of
the whole frame has been prepared. A linear buckling analysis has been made using the
Ansys software [19]. The material’s model has been assumed to be a linear elastic with
the following parameters: Young modulus E = 200000 MPa and Poisson ratio ν = 0.3.
The boundary conditions applied to the model are shown in Fig. 8a. All three ends of
the frame are pin-supported. A remote displacement option was used to achieve this
condition that was applied to the whole cross-section and realised at its centroid. At
the bottom of the vertical part of the frame displacements along three axes are blocked.
The rotation around the axis z is allowed. Both ends of the horizontal part can move
horizontally and rotate around the z axis. To avoid a rigid body motion the horizontal
displacement has been taken away at one node in the mid-length of the horizontal beam.
The force F has been applied to the upper part of this beam at the edge corresponding
to the center line of the web of the vertical part of the frame (see Fig. 8a).

To discretize the model of the frame solid elements have been used marked as solid186
which were tetrahedral, second order finite elements with 10 nodes and 3 degrees of
freedom in each node – displacements according three axes. This choice provides the
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Fig. 8. FE model of the T-frame: a) boundary conditions; b) mesh convergency study;
c) mesh pattern

most effective model among others investigated in which both tetrahedral and hexahedral
elements were taken into account. The negative influence of using a single element over
the thickness of the beam wall was also verified. The number of elements has been
established based on the mesh convergency analysis presented in Fig. 8b. It was decided
to set the element size to 22 which gave about 400000 nodes for the frame H-300 with the
parameter λ1 = 10. It should be noted that even for the two extreme cases considered,
shown in Fig. 8b, the difference in value of buckling load is only about 0.2%. It comes
from the fact that the buckling mode has a global character and the analysis is a linear
one. The exemplary mesh used in all analyses is shown in Fig. 8c.

Typical buckling shapes corresponding to frame H-300 are shown in Fig. 9 for selected
lengths of the horizontal beam. The values of the buckling load for all considered frames
are presented on plots in Fig. 10 together with the results given by the analytical solu-
tion described in the previous section. They are given on the vertical axis whereas the
horizontal axis corresponds to the length parameter λ1 – the higher its value the longer
the horizontal part of the frame. As to the analytical solution two curves are shown. One
of them corresponds to the buckling load for the whole frame – red line with circles, and
the second one corresponds to the buckling of the vertical beam only – blue line with
diamonds. In FE analysis only the whole frame was analysed and its results are marked
with black crosses.

18



Fig. 9. First buckling mode of T-frame H-300 for different λ1: a) λ1 = 10; b) λ1 = 25; c)
λ1 = 40 (scaled 103)

7. Discussion of the results

The results presented above have been obtained with the use of the analytical model
and with the use of the numerical approach. In both ways linear behaviour of the material
has been assumed. In analytical model the shearing stresses were taking into account.

For all considered examples the shape of the frame after the loss of stability was the
same and consistent with these shown in Fig. 9 on which the presented deformation is
magnified 103 times for better visualisation. The vertical part buckles like the column
hinged supported at the bottom and hinged or stiff supported at the top. The latter
depends on the length of the horizontal beam. If the beam is short it works similar to
fixed support and the rotation at this point is small. The longer the beam the smallest
its influence on the behaviour of the column which will deform as hinged supported at
both ends if the beam is long enough. This relation is also visible in the values of the
buckling loads obtained from the analytical solution. The longer the horizontal beam
is the closer the value of the buckling load of the frame is (red line in Fig. 10) to the
value corresponding to the case when only column is considered (blue line). In presented
examples for λ1 = 40 the buckling load for the frame is only 0.2% higher than this for
the column. This means that the influence of the horizontal beam on the stability of the
whole structure is negligible.

The distribution of the results given by the FE analyses (black crosses in Fig. 10) is
similar to these from analytical solution. They are slightly above the red curve. The
smallest difference was noted for the frame H-300 with λ1 = 40 and equal to 3% and the
biggest difference, 6%, for the frame H-500 with λ1 = 10. However, the FE results are
very close to the analytical solution in which shear effect is omitted (green line – B-E)
– the discrepancy does not exceed 1%. Since the influence of the finite element type on
the results has been eliminated and a number of boundary conditions has been verified,
the agreement between the FE results and the B-E theory may be the result of the linear
nature of the buckling analysis, which is not able to capture the shear effect phenomenon.
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Fig. 10. Comparison of dimensionless buckling loads obtained with analytical and nu-
merical approach: a) H-300; b) H-400; c) H-500

8. Conclusions

In the present work the problem of stability of the T-frame has been solved analytically
and numerically. The novelty of the analytical approach proposed in the paper lies in
the fact that the influence of the shear stress on the deformation of the frame is taken
into account at the model definition. This makes analytical calculations more realistic
especially when short beams are considered and at the same time makes the structure
safer. The defined shear coefficient allows to determine the contribution of the shear
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stress to the critical load. Presented formulae gives more conservative results even when
compared to the numerical calculations since inclusion the shear effect reduces the stiffness
of the structure and thus lowers the value of the buckling load. The obtained buckling
loads are consistent for both approaches and the biggest difference between the analytical
and numerical solution equals 6%. Additional FE analyses have to be performed regarding
the compatibility of both methods with emphasis on FE modelling details like the type
and number of elements or the way of load and support.

The presented approach has a general form and can be applied to different shapes
of the cross-section. Further broad investigation, including experimental tests, might
validate its correctness and explain the influence of the shearing stress on the behaviour
of engineering structures.
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