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This research has been conducted for the purpose of developing bionic flapping-wing air-
craft. In this paper, wings are regarded as flexible, and the response issues of wings under
certain excitation functions are investigated. The research is based on preliminary studies
about bionic flapping wings and aims to provide data references to aid the selection of electri-
cal actuators and the design of driving mechanisms for bionic flapping-wing aircraft at a later
stage. The dynamic analysis shows that the response functions adapt well to the flapping
movements of the wings. However, there are mutational situations in the wing structure trans-
formation which are bad for structural stability, and cause there to be too little lift force.
Under such circumstances, the minimum norm of low-order vibration mode difference values
is used as the optimization principle to conduct the structural optimization. The optimiza-
tion results and the wing flutter test both show that the optimized wings can better avoid
structural mutations and their response functions can also better meet the design require-
ments.

Key words: bionic flapping-wing aircraft, flexible wings, structural mutation, structural
optimization, flutter test.

1. Introduction

One of the future directions in the development of bionic flapping-wing air-

craft is to make them small and portable, so that they can fly at a very low
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height similar to insects. As it is found in nature, after millions of years of evo-

lution, flapping-wing flight has many advantages in comparison to fixed-wing

flight or rotor-wing flight. This type of flight allows for taking off, speeding

up and hovering in the air. It has a very high manoeuvrability and flexibility

[1, 2]. Many experts and researchers are now working on developing flapping

wings.

To study and mimic insect or bird motion is to learn from the results of

millions of years of evolution. Mueller [3] and Tien Van Truong et al. [4]

conducted a large number of experimental studies on the flow field and the aero-

dynamic performance of the wing flapping by using shock-wave velocity meter

and hot-wire anemometry. Their studies involved the effects of backflows on

boundary layer thickness and laminar-flow separation positions and the effects

of turbulence and sound-wave stimulation on nonlinear lifting and hysteresis

effects. However, due to the low Reynolds number, the condition, size and accu-

racy of the model used in the studies, wind tunnel turbulivity, the aerodynamic

force measuring technology and data uncertainty resulted in big differences be-

tween the testing data collected by different wind tunnel devices. Zheng et al.

[5] conducted an examination in 2010 using a high-speed camera to observe free

flying insects. The data collected were used as references for further stimulation

calculation. Young et al. [6] conducted a refined computational fluid mechanic

stimulation of the real wing movement of locusts in 2008. They pointed out that

the bending and torsion of wings can enhance the aerodynamic performance and

lower the energy consumption.

This paper aims to further analyze a bionic flapping-wing aircraft that has

already been designed. Through vibration analysis, the frequency features and

dynamics generated in all parts of the flapping wings are calculated according to

predetermined excitation functions; in addition, motion rules can be acquired.

These calculations help to determine how the wing structure can be optimized

and they offer a theoretical basis for further analysis of the aircraft dynamics

and the design of the driving mechanism.

The study of bionic flapping-wing aircraft concerns wing transformations

and morphologic changes that occur during the flapping. It is undoubtedly very

hard to cover every aspect of this. In fact, a vein is an important part of an

insect’s wing. The vein offers primary rigidity and partial flexibility to the wing.

Additionally, the vein contributes to 90% of the weight of the wing, while the

membrane makes up only 10% [7]. Therefore, in this paper, analysis of the

structural dynamics of the bionic flapping-wing aircraft will focus on analysis of

the vein structure of the wing.

The wing structure used in our study, which was designed previously based

on the theoretical bionics and size rule is shown in Fig. 1.
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Fig. 1. Structural model of wing.

2. Dynamic analysis of the flapping-wing structure

2.1. Establishing the finite element model

While conducting analysis of a structural system, M , C and K are usually
used to represent the n-order positive definite mass matrix, the damping matrix
and the stiffness matrix respectively. In addition, x(t), ẋ(t), ẍ(t), p(t) represent
the displacement, speed, acceleration and stimulation array of the structural
system respectively. The equation of motion of the system can be indicated
as [8]

Mẍ(t) + Cẋ(t) +Kx(t) = p(t).

If w is the Fourier variable, after Fourier transform is conducted on the
equation, there will be

Ẋ = jwX, Ẍ = −w2X,

then

(2.1) (K − w2M + jwC)X(w) = P (w).

After the wing structure is simplified into a spatially rigid frame unit, a Tim-
oshenko beam model will be assumed and analyzed. As a three-dimensional unit
structure, this beam model is mainly affected by axial force, bending moment
and torsion. Under micro transformative conditions, the characteristic matrix is
constituted by the characteristic matrixes of the axial force unit, bending unit
and the torsion unit [9].
The finite element model of the wing structure is simulated as shown in

Fig. 2 by using a spatially rigid frame unit.
As is shown in the Fig. 2, the structure has 22 pitch points and 21 beam

units (1 boundary support beam unit, 4 boundary non-support beam units and
16 central transition beam units).
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Fig. 2. Finite element structural model.

After selecting a beam unit from all the divided units, a local coordinate
system of the double-pitch point unit is established first [10] (see Fig. 3).

a) b)

Fig. 3. Local coordinate systems: a) force and linear displacements,
b) moment of force and cross-section rotations.

Use Timoshenko beams as the bending units. In terms of the spatially rigid
frame unit, the relationship map of the local coordinate systems and the overall
coordinate systems is demonstrated in Fig. 4.
In this research of wing structure, damping is hard to be confirmed since its

value is located within a small scope. Thus, to simplify the calculation model,
Rayleigh damping is adopted, which is the linear combination of the structure’s
overall mass matrix and rigidity matrix:

C = αM + βK.

In the equation above, α and β are two constants that are independent from the
frequency.
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Fig. 4. Transforming relationship of coordinate systems.

The relationship between the Rayleigh damping matrix and the diagonal
matrix ϕT

j Cϕi is

ϕT
j Cϕi =

{
ci i = j,
0 i 6= j.

On the basis of the Fourier transform, mass matrix, rigidity matrix and
damping matrix, the displacement response of the system can be expressed as

(2.2) X(w) =
n∑

i=1

ϕiϕ
T
i P

ki − w2mi + jwci
.

In the equation above, ki = ϕT
i Kϕi; mi = ϕT

i Mϕi; ci = ϕT
i Cϕi.

The inherent frequency λi of the designed wing, the relevant vibration mode
ϕi and the response function X(w) model have been completely established. The
inherent frequency is λi = w2

i , (i = 1, 2, . . . , n), the relevant vibration mode ϕi

is calculated using Eq. (1) and the response function X(w) is calculated using
Eq. (2).

2.2. Solution of the finite element model

The motion model and the stimulation function are derived from the mea-
surement results of an insect’s free flight. The boundary condition of the insect’s
(bee) movements is the root segment that does not have any translation displace-
ments and it only reciprocates flapping around the dead y axle. The motion rule
of the flapping of the wing’s root segment adopts the fitting data [11] of insect
wing fit by fourth-order Fourier level (n = 4):

P (t) = a0 +

n∑

i=1

(ai cos(i · k · t) + bi sin(i · k · t)).
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In the equation above, k is the reduced frequency and its parameters are listed
in Table 1.

Table 1. Parameters of the stimulation function.

Parameters Sizes Parameters Sizes

a0 31.40611 b1 11.83419

a1 −57.31259 b2 3.37326

a2 11.60773 b3 1.75002

a3 −1.18904 b4 0.37691

a4 −0.13234 k 0.926

The map of the stimulation function of the wing is in Fig. 5.

Fig. 5. Map of stimulation function of the wing.

The material used in this research is nylon 101 and its main attributes are
shown in Table 2.

Table 2. Attributes of material.

Attribute Value Unit

Elasticity modulus 1 · 109 N/m2

Poisson ratio 0.3 None

Mass density 1150 kg/m3

Tension strength 79289709 N/m2

Yield force 6 · 107 N/m2

Modals contribute to the wing responses differently. The weight factors are
in direct proportion to the reciprocals of the modal frequencies [12]. This means
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that the features of low-order modals to some degree determine the dynamic
property of wings. For a flapping-wing structure of flapping movement, the in-
fluence of high-order modals is much smaller than that of low-order modals.
Therefore, low-order modals will be focused on in this research. Even though
some errors will be generated, the amount of work will be significantly decreased
as the matrix order of response function will be decreased as well. In fact, high-
order modals basically will not appear in this paper due to the limitations of
the flapping frequency of bionic flapping-wing aircraft [13]. Therefore, use modal
truncation, and taking the first 5 order modes into consideration, that is, n = 5.
In this paper, it is therefore important to determine λi = w2

i , ϕi, i =
1, 2, . . ., 5, and

X(w) =

5∑

i=1

ϕiϕ
T
i P

ki − w2mi + jwci
.

The response results of the first five orders of the structure are calculated as
shown in Fig. 6.

a) b)

c) d)

e)

Fig. 6. Response results of the first five orders of modals: a) first-order, b) second-order,
c) third-order, d) fourth-order, e) fifth-order.
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The results of analysis of these modal responses are shown in Table 3.

Table 3. Modal analysis of wing structure.

Orders Frequency [Hz] Vibration modes

1 14.408 Main wing vein swinging, first-order bending vibration

2 40.941 Wing tendon vein sloping upwards, second-order bending vibra-
tion

3 64.546 Main wing vein transforming into the shape of saddle, third-
order bending

4 99.814 Wing tendon veins intersecting and sloping upwards and down-
wards, first-order torsion vibration

5 112.170 Wing tendon veins intersecting reversely and sloping upwards
and downwards, second-order torsion vibration

From the analysis above it can be seen that the inherent frequencies of the
wing increase as the orders of the analyzed modals increase. The first three
orders are main wing vein swinging, wing tendon veins sloping upwards and
main wing vein transforming into the shape of saddle. The reasons for this are
that the wing’s integral rigidity is not enough and the shake-proof ability is
weak which therefore needs to be improved. The fourth and fifth orders are the
torsion and transformations of the wing tendon veins.
Figure 7 is the response map of the fifth-order modals of the wing struc-

ture’s four transverse beams. And it is clear that they intersect positively and
negatively.

Fig. 7. Response map of boundary rectangular coordinates of the wing structure.
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In order to better observe the intersections, a polar diagram is depicted
below:

Fig. 8. Response map of boundary polar diagram of the wing structure.

From Fig. 8 it can be clearly seen that there are three mutational points.
This indicates that the wings will easily transform (especially when the wings
flap resonantly) during the flight of the bionic flapping-wing aircraft. If the wings
fail to transform smoothly, the fight will not be able to be stable. This was why
the previously designed aircraft designed vacillated to the left and right.

3. Optimization design of flapping wings

Equation (2.1) tells us that if the conditions of designed stimulation func-
tion remain unchanged and the finite element models are similar, the inherent
frequencies and relevant vibration modes and requirements of the original de-
signed structures need to be alike to make their displacement amplitudes and
stimulation responses similar.
It is hard to make the n-order frequencies and the relevant n-order vibra-

tion modes the same while designing the optimization from the perspective of
dynamics [14]. From the perspective of the service conditions of bionic flapping-
wing aircraft, the following optimization principles are worth considering: the
inherent frequencies of the first N (N = 5) orders satisfy the design require-
ments and the vibration modes of low-order (mainly the first-order) structures
are close. This ensures the improvements of the structural low-order dynamic
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responses, and provides that the low-order dynamic responses and the dynamic
responses of original structure are nearly the same.

3.1. Establishment of optimization model

According to the previous analysis, the following optimization model is es-
tablished.
In the research of wing-structure design, if only low-order dynamic feature

indexes are taken into consideration, then

(K0
A +K0

B)Φ
0 = (M0

A +M0
B)Φ

0Λ0,

Φ0T
r (K0

A +K0
B)Φ

0
r = Λ0

r , Φ0T
r (M0

A +M0
B)Φ

0
r = Er.

In the equation, M0
A, K

0
A are the mass matrix and the rigidity matrix of the

original structure; and M0
B , K

0
B are the mass matrix and the rigidity matrix of

the optimized structure respectively, and Λ0, Φ0 are respectively the inherent
frequency and the vibration-mode matrix of the designed structure,

Φ0
r = [ ϕ0

1 ϕ0
2 · · · ϕ0

n ]Λ0
r = diag( w02

1 w02
2 . . . w02

r ), r ≤ n.

The mass matrix and the rigidity matrix of the structure are determined by
the structural parameters b = [b1 b2 . . . bn]. This means that the two matrices
are functions of the structure’s parameters which can be expressed as M0

B(b),
K0

B(b).
The selection of the limitation requirements is such that the inherent fre-

quency needs to be close to the required frequency. So the minimum optimiza-
tion principles of low-order vibration-mode difference values can be expressed
using the following norms:

find b,

min
∑

j

√√√√
n∑

i

[ϕj(i)− ϕ∗

j (i)]
2, j = 1, 2, ...,m,

s.t. gr(b) = |fr − f∗r | ≤ ηf∗r (r = 1, 2, ...,m),

bl ≤ b ≤ bu.

In the equation, ϕj , fr represent the vibration mode and the inherent frequency
of the improved structure respectively; ϕ∗

j , f
∗

r represent the required vibration
modes and the inherent frequency of the original wing-structure respectively;
m, N represent the vibration mode order and the order of frequency after the
modal is being cut off and m ≤ N (but here m = N); η represents the error-
tolerate coefficient; and bl, bu represent respectively the lower and upper limits
of the conditional variables of the improved structure.
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3.2. Planned optimization scheme

Considering that, in the scheme designed previously, the wing is unstable
while in a flapping flight, the wing needs to be improved by adding a truss.
Three possible optimized structures are presented in Fig. 9.

a) b)

c)

Fig. 9. Three optimized structure: a) structure 1, b) structure 2, c) structure 3.

3.3. Evaluation principles of optimization results

To better evaluate the three different schemes, the principle of modal assur-
ance criterion (MAC) is adopted. This principle tests the extent of consistency
of the vibration modes of the optimized structures and the original ones [15].
For random modal i, MAC can be expressed as

MACi =

∣∣ϕ∗T
i ϕi

∣∣2

(ϕ∗T
i ϕ∗

i )(ϕ
T
i ϕi)

.

In the equation, ϕ∗

i is the vibration mode of the original structure and ϕi is
the vibration mode of the designed (optimized) structure. The equation tells us
that the closer the MAC value is to 1, the better the extent of consistency of
the vibration modes is.

3.4. Analysis of optimization results

To evaluate the schemes, MAC calculations are conducted for the three de-
signed schemes and the original one. The results are listed in Table 4.



192 X. JIN et al.

Table 4. Modal data of the wing-structures.

Orders 1 2 3 4 5

Original structure frequency 14.4080 40.9410 64.5460 99.8140 112.1700

frequency 17.8100 76.1760 107.9400 132.5100 188.0400

Optimized Structure 1 error 0.2361 0.8606 0.6723 0.3276 0.6764

MAC 0.4313 0.7708 0.8581 0.4198 0.1726

frequency 16.3530 28.0650 52.9590 99.2440 136.5600

Optimized Structure 2 error 0.1350 0.3145 0.1795 0.0057 0.2174

MAC 0.9998 0.2137 0.0022 0.0405 0.4287

frequency 13.9060 48.9900 97.6400 141.8200 211.7600

Optimized Structure 3 error 0.0348 0.1966 0.5127 0.4208 0.8878

MAC 0.9956 0.8836 0.7671 0.6177 0.0233

The comparison maps of orders and MAC for different schemes are shown
in Fig. 10 and Fig. 11.

Fig. 10. Comparison map of frequencies at different orders for the schemes.

Table 4 and Fig. 10 show that optimized structure 2 is better because the
frequency error is the smallest and its frequencies at the orders are the closest
to the original scheme.
Table 4 and Fig. 11 demonstrate that among the first five modals, the MAC

of optimized structure 3 is the most ideal and then that of optimized structure 1
and 2. In fact, according to bionic and size rule, the initial frequency of the bionic
flapping-wing aircraft is 15 Hz. Taking the modal cutting off discussed before
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Fig. 11. Comparison map of MACs for the schemes.

into account, the first-order modal should be emphasized and, when considering
this optimized structure 2 is obviously the best.
The response analysis of optimized structure 2 is conducted next and its

polar diagram is presented in Fig. 12.

Fig. 12. Polar diagram response map of optimized structure 2.

From the diagram it can be seen that there are no mutational points like the
ones shown in Fig. 8. The whole diagram is much smoother.
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All things considered, optimized structure 2 is more suitable to be selected
for the wing structure of a bionic flapping-wing aircraft than any of the other
structures.
To draw such a conclusion, the authors assume that when compared to the

original scheme and optimized structure 3, the truss added to optimized struc-
ture 2 makes the whole structure a triangle structure that is stable. Additionally,
in optimized structure 1, two points are used as connection points between the
flapping wings and the airframe, while structure 2 has only one point. In this
case, on one hand, the flexibility of the transformation ability of the flexible
wings can be better executed, giving a transmission gain to the craft’s lift and
on the other hand, the added truss can prevent the bending of the wings. When
the wings intersect and transformation happens, the part changed is often far
away from the airframe.

4. Modal test of wing flutter

In order to confirm the flutter situation of the optimized wing structure,
a flutter test is conducted. Due to the changeable rigidity feature of the stud-
ied wing model, the hammering method is inappropriate. Instead, the stimula-
tion method using an exciter is adopted. In terms of collecting data, the LMS
SCADAS III modal analysis device and PCB acceleration sensor are used. The
testing software is LMS Test. Lab 8B.
The stimulation signal of the exciter chooses the sine quick-scanned signal

whose scanning cycle is shorter. Additionally, as the size of the flapping-wing
is very small and the hinge joint surface between the wing and the driving

Fig. 13. v−f map of wing-structure flutter test.
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mechanism is relatively big, the supportive boundary model of joint interstice
is adopted in order to increase the accuracy of the test.
On the basis of p−v method introduced in [16], the v−f map of wing flutter

is obtained as shown in Fig. 13.
From Fig. 13, it can be concluded that the only flutter phenomenon occurs

in the modal coupling of the second-order upward bending and the third-order
bending. Beyond that, no more flutter phenomenon happens. As the coupling
speed of second-order and third-order bending is faster than that of the flapping-
wing aircraft, within the normal scope of scope, no flutter phenomenon will
happen to the wings.

5. Conclusion

1. Through the finite element modal analysis of a bionic flapping-wing structure
aircraft, its inherent frequency and vibration mode were obtained. This es-
tablished the foundation for the upcoming optimized design with structural
dynamic features, driving mechanism design and selection of electric machine
parameter.

2. The vibration mode of the initially designed bionic flapping-wing aircraft vi-
bration changes and intersects up and down when the resonance occurs, and
after the wing membrane is covered, mutational shapes will easily emerge,
which are bad for the stability of flight. To solve this problem, the wing
structure was redesigned. The inherent frequency in the redesigned struc-
ture 2 was increased. Consequently, the wing structure did not obviously
intersect up and down or bend, and the torsion vibration mode did not occur
either. Therefore, this change in vibration mode was more suitable to bring
transmission to the lifting force and keep it stable.

3. A flutter test was conducted in order to avoid the errors that might possibly
exist in the theoretical calculation and design of the structure. The results
of the test showed that within the flight speed scope of flapping wings, no
flutter phenomenon or unstable movement would occur.
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