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Two thin-walled trapezoidal corrugated cores of seven-layer sandwich plate constitute the
subject of this study. Transverse shear moduli of these cores are analytically determined and
FEM numerically studied with the use of SOLIDWORKS software. The results of both methods
are compared using a plate model.
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1. Introduction

Strength and stability problems of thin-walled multilayer structures have
been studied from the mid of the 20th century until today. Libove and Hub-
ka [7] presented the first detailed analytical study of elastic constants for cor-
rugated cores of sandwich plates. Allen [1] presented a comprehensive study
regarding analysis and design of sandwich structures. Carlsson et al. [3] de-
scribed the model of transverse shear stiffness for sandwich plate with corrugated
core. Findings of their study were verified by experiments. Elastic constants for
sandwich structures with corrugated core were calculated by Cheng et al. [4]
based on finite element method (FEM) numerical analysis. The shear stiffness
model for corrugated core structures was presented by Isaksson et al. [5] and
its applicability was evaluated through experiments and finite element analysis.
Peng et al. [11] proposed a mesh-free Galerkin method based on the first-order
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shear deformation theory for the elastic bending analysis of corrugated plates.
The results of calculations were compared with the results of a three-dimensional
numerical analysis using ANSYS system. Kazemahvazi and Zenkert in [6]
presented an original way of modelling corrugated sandwich structures. Their
analytical model was described in detail and the results were compared to fi-
nite element prediction. Magnucki et al. [10] analysed strength and buckling
of sandwich beams with a crosswise or lengthwise corrugated core. The results
of analytical and FEM numerical calculations as well as experimental results
were described and compared in their study. Bartolozzi et al. [2] presented
a general analytical method of determining equivalent properties for corrugated
cores of sandwich structures. Their paper contains analytical formulation and
its validation using FEM simulations. Magnucka-Blandzi and Magnucki
[8] presented the theoretical study of transverse shear modulus determination
for corrugated cores of sandwich beams. Four corrugated cores in the form of
circular arcs, a sin wave, trapezoids and an odd function were analysed. Their
study shows considerable sensitivity of the shear modulus to shape of the cor-
rugation. Magnucka-Blandzi et al. [9] described the mathematical modelling
of transverse shearing effect for sandwich beams with sinusoidal crosswise and
lengthwise corrugated cores. A distinct influence of shearing effect on deflections
and critical loads was observed.
Two thin-walled trapezoidal corrugated cores of seven-layer sandwich plate

(the main core and the face core) constitute the subject of this theoretical study
(Fig. 1).

Fig. 1. Scheme of the seven-layer plate.

The trapezoidal corrugated main core connects two three-layer faces. The
corrugation of the main core is orthogonal to the corrugations of the cores of
faces. The total thickness of the plate is as follows:
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(1.1) tp = tc1 + 2tc2 + 4ts,

where tc1 is the depth of the main core, tc2 is the depth of the face core and ts
is the thickness of the sheets.

2. Analytical models of trapezoidal corrugated cores

2.1. The corrugated main core

The characteristic segment of the main corrugated core of the length b01
(the corrugation pitch of the main core) with two faces is shown in Fig. 2. The
thickness of the corrugated sheet is t01, the width of the flanges is bf1 and the
width of the segment of the face core (i.e., the corrugation pitch of the face core)
is b02.

Fig. 2. Scheme of cross section of the main core for one corru-
gation pitch b01.

The shear effect of the corrugated main core is a consequence of opposite
x-displacements of the faces. It is assumed that the faces are rigid compared to
the thin-walled corrugated sheet of the main core. The field of displacement is
anti-symmetric (Fig. 3).
Thus, the analytical model includes a quarter of the pitch of the corrugated

main core (Fig. 4).
The bending moment Mb(s) and the normal force N(s) in the plate with the

trapezoidal main core of the width b02 are

(2.1) Mb(s) = (Fs sinα1 −R cosα1) s, N(s) = Fs cosα1 +R sinα1,

where Fs is the load (shear force), R is the reactive force, s is the linear coordi-
nate.
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Fig. 3. Scheme of anti-symmetrical displacement
for pure shear of the main core.

a) b)

Fig. 4. Scheme of the theoretical model: a) load-forces, b) the auxiliary view.

Elastic strain energy is

(2.2) Uε = U (b)
ε + U (t)

ε ,
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 – bending energy,
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U (t)
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 – tension energy,

E – Young’s modulus, ν – Poisson’s ratio.
This energy is formulated according to Saint-Venant’s principle with consid-

eration of the elastic joint of the corrugated main core with rigid faces (Fig. 4b).
The edge effect decays at the small length s0. Timoshenko and Goodier [12]
described and discussed this type of problem.
The following unknown reactive force is determined by considering the the-

orem of minimum potential energy (Menabrea’s theorem) ∂Uε/∂R = 0:

(2.3) R = R̃Fs,

where the dimensionless reactive force is

(2.4)
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and other parameters are
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The unknown displacement u0 (Fig. 3) based on the Castigliano theorem
with consideration of the expressions (2.1) and (2.2) is as follows:

(2.5) u0 =
∂Uε

∂Fs
= 4

1− ν2

Eb02

(
s̃a1
x01

)3

fuFs,

where fu = fu1 + fu2, and

fu1 =

[(
1

2
− xs0

)3

+
xs0
xf2

(
3

4
− 3

2
xs0 + x2s0

)](
sin2 α1 − R̃ sinα1 cosα1

)
,

fu2 =

(
x01
2s̃a1

)2(1

2
− xs0 +

xs0
xf2

)(
cos2 α1 + R̃ sinα1 cosα1

)
.

The shear strain angle γxz and the shear stress τxz (Fig. 3) are as follows:

(2.6) γxz =
2u0

tc1(1− x01)
, τxz =

2Fs

b01b02
.

Thus, the shear modulus of elasticity (the Hooke’s law) for the corrugated main
core is in the following form:

(2.7) G(C1)
xz =

τxz
γxz

= G̃(C1)
xz E,

where the dimensionless shear modulus is

(2.8) G̃(C1)
xz =

τxz
γxz

=
1− x01

4 (1− ν2) xb1fu

(
x01
s̃a1

)3

.

Example. The parameters of the structure are: ts = 0.8 mm, tc1 = 31.4 mm,
t01 = 0.8 mm, b01 = 46.0 mm, bf1 = 10.0 mm, tc2 = 16.2 mm, t02 = 0.8 mm,
b02 = 40.0 mm and bf2 = 8.0 mm.

The value of the dimensionless shear modulus for the above data is G̃(C1
xz =

0.001459.

2.2. The corrugated core of the faces

The characteristic segment of the trapezoidal corrugated core of the faces
for one pitch b02 is shown in Fig. 5. The thickness of the corrugated sheet is t02,
the width of flanges is bf2 and the segment is of unit width.
The shear effect of the corrugated face core is a consequence of a y-displacement

of the sheet. It is assumed that the main core is rigid compared to the thin-walled
corrugated sheet of the face core. The field of displacement is shown in Fig. 6.
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Fig. 5. Scheme of cross section of the face corrugated
core for one corrugated pitch b02.

Fig. 6. Scheme of displacement for pure shear of the face core.

Thus, the force system acting in the corrugated face core and in the outer
sheet is shown in Fig. 7.
The bending moments and normal forces for the system are as follows:

• the first range
{
0 ≤ s1 ≤ 1

2b02 (1− xf2)
}

(2.9) Mb(s1) = R1s1,
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Fig. 7. Scheme of the force system.

• the second range
{
0 ≤ s2 ≤ 1

2b02xf2
}

(2.10) Mb(s2) = R2s2,

• the third range {0 ≤ s3 ≤ sa2}

(2.11) Mb(s3) = −R1

[
1

2
b02 (1− xf2)− s3 cosα2

]

+ R2

[
1

2
b02xf2 + s3 cosα2

]
− Fss3 sinα2,

(2.12) N(s3) = (R1 +R2) sinα2 + Fs cosα2,

where

sa2 = tc2s̃a2, s̃a2 =

√
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(
1

2
− xf2

)2

.

Equation of elastic strain energy is as follows:

(2.13) Uε = U (1)
ε + U (2)

ε + U (3)
ε ,
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where
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The following two algebraic equations are obtained based on the theorem of mini-
mum potential energy (Menabrea’s theorem) ∂Uε/∂R1 = 0 and ∂Uε/∂R2 = 0:

(2.14) −a11R1 + a12R2 = β1Fs, −a21R1 + a22R2 = β2Fs,

from which R1 = R̃1Fs, R2 = R̃2Fs, where
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The unknown displacement v0 (Fig. 3) based on the Castigliano theorem
with consideration of the expression (2.13) is as follows:

(2.16) v0 =
∂Uε

∂Fs
=
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E
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The shear strain angle γyz and the shear stress τyz (Fig. 6) are as follows:

(2.17) γyz =
v0
tc2
, τyz =

2Fs

b02
.

Thus, the shear modulus of elasticity (the Hooke’s law) for the corrugated face
core is in the following form:

(2.18) G(C2)
yz =

τyz
γyz

= G̃(C2)
yz E,

where the dimensionless shear modulus is

(2.19) G̃(C2)
yz =

τyz
γyz

=
2

(1− ν2)xb2fv

(
x02
s̃a2

)3

.

Example. Parameters of the structure: ts = 0.8 mm, tc1 = 31.4 mm, t01 =
0.8 mm, b01 = 46.0 mm, bf1 = 10.0 mm, tc2 = 16.2 mm, t02 = 0.8 mm,
b02 = 40.0 mm and bf2 = 8.0 mm.

The value of the dimensionless shear modulus for the above data is G̃(C2)
yz =

0.0009895.
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3. FEM Numerical models of trapezoidal corrugated cores

In order to estimate accuracy of the above analytical analysis the considered
plate is modelled with the SOLIDWORKS software using the example data. The
SOLIDWORKS model is confined to a single segment of the plate, including
a single, periodically repeated trapezoidal shape in each of the cores, i.e., in the
main and facial cores.

3.1. The corrugated main core

The apparent transverse shear modulus of the plate is determined with the
help of the model shown in Fig. 8. Behaviour of the plate subject to shearing
in x-direction is depicted by loading the bottom surface of the upper face with
a tangent force in x-direction and the upper surface of the bottom face with
a force of equal value in the opposite direction. The ratio of x-displacement of
the surfaces to the distance between them is equal to the plate transverse strain.
Therefore, due to asymmetry of the model only a half of the total plate thickness
is taken into account.

Fig. 8. The SOLIDWORKS model adopted for the
purpose of determination of the apparent transverse

shear modulus G(C1−FEM)
xz .

Hence, the model consists of the upper face which is composed of two walls
separated by the face core located between them and a half of the main core
located above the xy-plane. The bottom surface of the upper face is loaded
with a tangent force 1 kN in x-direction. The x, y, and z displacements of the
trapezoid A edges located at the xy-plane are equal to zero, while the B edges
are fixed only in y and z directions (Fig. 8).
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The model subjected to the above mentioned load and boundary conditions
is displaced as shown in Fig. 9.

Fig. 9. Tangent displacement of the main core of the considered seven-layer plate – the bottom
surface of the upper face subjected to a tangent force equal to 1 kN acting in x-direction (a half

of the total plate thickness is considered).

Middle point of the bottom face surface is displaced by δx0 = 3.005·10−2 mm.
Hence, the plate transverse strain is equal to

(3.1) γxz = 2
δx0
tc1

= 2
2.925 · 10−2

31.4
= 1.863 · 10−3.

Since the force is applied to the rectangular surface AS = b01 · b02 =
46 mm · 40 mm = 1840 mm2, the transverse shear modulus of the plate in
x-direction is equal to

(3.2) G(C1−FEM)
xz =

τxz
γxz

=
F

As · γxz
=

1000

1840 · 1.863 · 10−3

N

mm2
=291.713 MPa.

Hence, the relative shear modulus is

(3.3) G̃(C1−FEM)
xz = G(C1−FEM)

xz

/
E = 0.001459.

3.2. The corrugated core of the faces

A similar approach enables to determine the plate transverse shear modulus
in y-direction.



DETERMINATION OF SHEAR MODULUS OF ELASTICITY. . . 433

Using a similar model allows to calculate the apparent transverse shear mod-
ulus of the plate in y-direction (Fig. 10). In this case, the bottom surface of upper
layer of the upper face is loaded with a tangent force 1 kN in y-direction. The
x, y, and z displacements of the A-edges are equal to zero, while the B-edges
are fixed in x and z directions (Fig. 10).

Fig. 10. The SOLIDWORKS model adopted for
the purpose of determination of the apparent
transverse shear modulus in y-direction.

The model bearing such load and boundary conditions is displaced as shown
in Fig. 11.
Middle point of the bottom surface of the upper layer is displaced by δy0 =

4.127 · 10−2 mm. Hence, the plate transverse strain is equal to

(3.4) γyz =
δy0
tc2

=
4.834 · 10−2 − 5.430 · 10−3

16.2
= 2.6488 · 10−3.

The force is applied as before to the same rectangular surface of the area
equal to 1840 mm2. The transverse shear modulus of the plate in x-direction is

(3.5) G(C2−FEM)
yz =

τyz
γyz

=
F

As · γyz
=

1000

1840 · 2.6488 · 10−3

N

mm2
=205.182 MPa,

Hence, the relative shear modulus is

(3.6) G̃(C2−FEM)
yz = G(C2−FEM)

yz

/
E = 0.001026.
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Fig. 11. Tangent displacement of the main core of the considered seven-layer plate – the bottom
surface of the upper face subjected to tangent force equal to 1 kN acting in y-direction.

Comparison of the results obtained analytically and numerically shows good
compliance:

(3.7)
G̃(C1−Analyt)

xz = 0.001387, G̃(C1−FEM)
xz = 0.001420,

G̃(C2−Analyt)
yz = 0.0009895, G̃(C2−FEM)

yz = 0.001026,

since the differences between them are below 4 percent.
However, in order to improve credibility of the results some additional vari-

ants of the sandwich plates were considered. They differed in the area of the
surfaces, where the cores are adjacent to planar faces. Two series of variants
were studied: in the first one the shapes of the main cores varied (bf1 = 8, 9,
10, 11, 12 mm) while the cores of the faces remained unchanged (bf2 = 8 mm).
The results of these examples are presented in Table 1 and Fig. 12a.
In the second series the cores of the faces were changed (bf2 = 6, 7, 8, 9,

10 mm) with constant bf1 = 10 mm and the results are shown in Table 2 and
Fig. 12b.
Such shape changes would affect the cross section areas of the cores; there-

fore, in order to keep them constant the thicknesses t01 and t02 were adjusted
accordingly.
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Table 1. Comparison of analytical and FEM numerical results obtained for various variants
of the main core (determined by bf1 and t01 parameters).

bf1 [mm] 8 9 10 11 12

t01 [mm]∗ 0.82261 0.81138 0.8 0.78847 0.77679

G̃C1
xz [Analytic.] 0.002106 0.001761 0.001459 0.001195 0.000966

G̃C1
xz [FEM] 0.002160 0.001772 0.001459 0.001198 0.0009826

∗ The thickness t01 is adjusted to keep cross section area of the main core constant.

Table 2. Comparison of analytical and FEM numerical results obtained for various variants
of the face corrugated core (determined by bf2 and t02 parameters).

bf2[mm] 6 7 8 9 10

t02 [mm]∗ 0.82169 0.81114 0.8 0.78821 0.77578

G̃C2
yz [Analytic.] 0.001858 0.001338 0.0009895 0.0007466 0.0005717

G̃C2
yz [FEM] 0.001976 0.001392 0.001026 0.0007471 0.0005570

∗ The thickness t02 is adjusted to keep cross section area of the face corrugated core
constant.

a) b)

Fig. 12. Comparison of analytical (solid line) and FEM numerical (circles) results obtained for
a) various variants of the main core and b) various variants of the face corrugated core.

Compliance of analytical and numerical results remains good. In the first se-
ries of the variants it is below 3 percent. The second series gave worse compliance
amounting to 13.7% in the worst case for bf2 = 6 mm.



436 J. LEWIŃSKI, E. MAGNUCKA-BLANDZI, W. SZYC

4. Conclusion

The considered seven-layer plate is a complex thin-walled structure and,
therefore, a full analytical description of the shear effect of the cores is very
complicated. In the present paper, the analytical model includes a certain sim-
plification: the elastic joints between the main core corrugated sheet and the
faces are simplified using the Saint-Venant’s principle.
The analytical and FEM numerical studies presented in this paper give evi-

dence that the width of the core trapezoidal base significantly affects the equiv-
alent shear modulus of the core. The detailed results of the study are presented
in Tables 1 and 2 and in Fig. 12.
Hence, the shear moduli defined by Eq. (2.8) for the main core and by

Eq. (2.19) for the face core can be used for modelling of seven-layer rectan-
gular plates.
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