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The stiffness and the natural frequencies of a rectangular and a V-shaped micro-cantilever
beams used in Atomic Force Microscope (AFM) were analysed using the Finite Element (FE)
method. A determinate analysis in the material and dimensional parameters was first carried
out to compare with published analytical and experimental results. Uncertainties in the beams’
parameters such as the material properties and dimensions due to the fabrication process were
then modelled using a statistic FE analysis. It is found that for the rectangular micro-beam,
a ±5% change in the value of the parameters could result in 3 to 8-folds (up to more than 45%)
errors in the stiffness or the 1st natural frequency of the cantilever. Such big uncertainties need
to be considered in the design and calibration of AFM to ensure the measurement accuracy
at the micron and nano scales. In addition, a sensitivity analysis was carried out for the
influence of the studied parameters. The finding provides useful guidelines on the design of
micro-cantilevers used in the AFM technology.

Key words: atomic force microscope, cantilever, stiffness, natural frequency, sensitivity ana-
lysis.

1. Introduction

Atomic Force Microscopes (AFMs) have been widely used for scanning mea-
surement at the micron and nano scales. A micro-cantilever with a sharp probe
at its free end is a key component of an AFM, as shown in Fig. 1. It works in
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Fig. 1. The working principle of an AFM.

a way similar to a gramophone stylus. While the probe scans a surface of a sam-
ple, the contact force between the probe tip and the surface being scanned leads
to a small elastic deflection of the micro-cantilever. The deflection is measured
by reflecting a laser beam to a position-sensitive photodetector which records
the movement of the reflected laser beam. By converting the signal generated
from the photodetector, a topographic image of the scanned surface can be
generated.
The quality of the image obtained from an AFM is greatly dependent on

knowing the elastic parameters of the cantilever. Depending on the mode of
application, either the bending stiffness or the 1st natural (resonant) frequency
of the cantilever is used. A good knowledge of these, often referred to as the
calibration of the cantilever, is of fundamental importance to both the manu-
facturer and the user as it determines the accuracy of the measurement. Since
the invention of AFM, the study of the calibration of AFM cantilevers has been
an essential subject in the development of the technology [1].
An AFM can be used in different modes of measurement, such as contact,

noncontact and tapping modes [1–3]. The classification is based on the type of
the interaction between the probe tip and the surface being scanned. For the
contact mode, the probe touches the sample surface all the time. It is custom-
ary to call this type of measurement as the static mode. As a high magnitude
contact force may damage the sample surface, a cantilever of a lower stiffness
is preferred. A flexible cantilever will also yield in large deformation, leading to
higher measurement sensitivity.
An AFM can also be used in a non-contact and tapping manner as termed

the dynamic mode. In the dynamic mode, the cantilever is externally oscillated
at or close to its 1st natural frequency about 5 to 10 nano-meter above the
sample surface such that the probe only comes in contact with the sample once
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in each vibration cycle. Changes in the frequency due to the contacts provide
information of the sample surface profile. In this mode, a higher stiffness, or
higher natural frequencies, normally only the 1st one being used for resonance
response, would give more accurate results.
There exist a variety of shapes for AFM cantilevers which are used in dif-

ferent modes for different applications. The most commonly used ones are the
rectangular and the V-shaped configurations, as shown in Fig. 2.

Fig. 2. SEM (Scanning electron microscope) images of (a) a rectangular cantilever
and (b) a V-shaped cantilever. The arrow in (b) indicates the probe tip. A better

view of the tip is shown in Fig. 6.

AFM cantilevers are mostly made of silicon and silicon nitride in a micro-
electronic fabrication process. Cantilevers are made by first patterning a circu-
lar silicon dioxide dot on a silicon wafer. Silicon beneath the silicon dioxide dot
is then etched, undercut and oxidized. Subsequently, the silicon post becomes
a tip after the removal of the oxide. Then, the cantilever is formed by etching
the boron doped silicon [1, 2].
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The micro-fabrication process, however, often leads to variable stoichiometry
of the cantilevers, which causes difficulties in controlling the dimensions of the
cantilever, such as the thickness and the length, as well as in ensuring the value of
the material properties, such as the Young’s modulus and the density. All these
will cause variation in the stiffness and the natural frequencies of fabricated
cantilevers [4].
To obtain the value of the stiffness and the natural frequencies of the can-

tilever, both experimental and analytical approaches have been proposed. For
the measurement of the stiffness, the cantilever is pushed at the free end by
a force of a known magnitude and the corresponding deflection is measured,
from which the stiffness can be calculated based on the classic elastic beam the-
ory. The known force can be produced in different ways. One way is to attach
a tungsten sphere [5] of a known mass as shown in Fig. 3. Another commonly
seen method is to use a reference cantilever of known stiffness to press against
the unknown one. From the deflection of the know cantilever, the interaction
force can be determined. This force is then used together with the deflection
of the unknown cantilever to determine its stiffness. Such static methods can
achieve an accuracy of 2–5% [6].

Fig. 3. A cantilever with a tungsten sphere glued to its free end [8].

The stiffness can also be determined by dynamic test methods which rely
on the determination of the natural frequencies of the cantilever. One method
is to fix a mass [7] to the free end then monitoring the change in the natural
frequency of vibration. This technique is applicable to any cantilevers. However,
as the mass has to be permanently added (to sustain with the vibration) it is
destructive and the error in measurement is relatively large [9, 10].
Apart from experimental measurements, analytical modelling has also been

used to derive theoretical values of the stiffness and the natural frequencies
based on the classic structural mechanics. For V-shaped cantilevers, different
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formulae have been proposed, eg. Butt et al. [12], Sader andWhite [13] and
Sader et al. [14]. One of the examples is the Parallel Beam Approximation
(PBA) by Albrecht et al. [11] in which the V shape is approximated by two
rectangles in parallel. Analytical modelling requires accurate knowledge of the
cantilever properties, such as the Young’s modulus and the geometry, with the
latter usually measured from scanning electron micrograph (SEM).
The structural geometry parameters of a rectangular and a V-shaped can-

tilever are shown in Fig. 4, with notations indicating the dimensional parameters
needed in determining the mechanical performance of the cantilever.

Fig. 4. Geometric parameters of the rectangular and V-shaped cantilevers (the probe tip at
the free end is ignored as negligible in affecting the mechanical performance).

AFM cantilevers are typically very thin and SEM measurement accuracy
error can be of 3%. This may lead to errors in calculation as the thickness is of
3rd power in beam deflection formula. In addition, material constants such as
the Young’s modulus may also vary due to the anisotropic deposit of the thin
film, to a variation range typically more than 3% [13].
In this work, we are motivated to use the finite element (FE) method as

an alternative approach to obtain the stiffness and the natural frequencies of an
AFM cantilever, and to introduce a range of randomness to the numerical model
to examine the influence of the uncertainties in the material and dimensional
parameters of the cantilever. The FE model will also allow a sensitivity study
to be carried out to determine the significance of the parameters involved.
Both the dynamic and static FE models were built for a rectangular and

V-shaped cantilever, respectively. The paper is organised in the following or-
der. First a deterministic FE analysis is discussed to verify the FE outcomes
with published theoretical and experimental results. Then the variation in the
beam dimensions and the Young’s Modulus are introduced, assuming a uniform
random distribution in the values of the parameters such as the geometric and
the Young’s modulus between ±5% of their nominal values. Finally a sensitivity
analysis was carried out to obtain the influential effect of the parameters on the
stiffness and the 1st natural frequency of the cantilever.
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2. Finite element analysis

A commercial finite element code ANSYS (Ansys Inc.) was used to model
the micro-cantilevers. The nominal values of the parameters used in the simu-
lations were obtained from a manufacturer of the cantilevers, for instance, AC-
160 tapping mode rectangular cantilever shown in Figs. 5 and 6 by Olympus

a)

b) c)

Fig. 5. (a) The manufacturer’s dimensions of the AC-160 micro cantilever [16],
(b) and (c) SEM images of plane view dimensions [8].

a) b)

Fig. 6. SEM images of the thickness of the cantilever [8], a) view in the axial
direction at the free end, b) close-up side view of the cantilever root.
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Corporation [16]. These include both the dimensions and the material proper-
ties, as listed in Table 1.

Table 1. Inputs of the FE model for the rectangular cantilever.

Parameters Nominal value Min. value (−5%) Max. value (+5%)

Length L [µm] 160 152 168

Width W [µm] 50 47.5 52.5

Thickness t [µm] 4.6 4.37 4.83

Young’s Modulus E [GPa] 167.4 159.0 175.8

Density ρ [kg/µm3] 2.33×10−15

Poisson’s ratio ν 0.27

Measurements of the physical dimensions were also performed using SEM [8].
The average length and width are 159.6 µm and 51.28 µm, respectively, with
the uncertainty relative to the nominal value being less than 1%. The thickness
of the cantilever is critical for bending deflection, and the uncertainty was found
to be much higher. Compared to the nominal value of 4.6 µm, the measured
thickness varies from 3.84 to 4.97 µm (corresponding error −6.5% and 8%),
respectively. In the FE model, an average thickness of 4.88 µm was used based
on SEM measurement.
The value of the Young’s modulus, density, Poisson’s ratio and geometric

parameters used in the FE analysis are listed in Table 1 for the rectangular con-
figuration and Table 2 for the V-shaped one. To cater for the variation in the
parameters, a randomness of uniform distribution in dimensions and the Young’s
modulus were introduced in a range of ±5% of the corresponding nominal values.
The density and Poisson ratio were assumed constant due to lack of available
data. The nominal values of the parameters (either the average of the measure-

Table 2. Inputs of the FE model for the V-shaped cantilever.

Parameters Nominal value Min. value (−5%) Max. value (+5%)

Length L [µm] 190 180.5 199.5

Length L1 [µm] 87.5 83.125 91.875

Width b [µm] 165 156.75 173.25

Single limb width w [µm] 33.3 31.635 34.965

Thickness t [µm] 0.6 0.57 0.63

Young’s Modulus E [GPa] 179.0 170.1 188.0

Density ρ [kg/µm3] 2.33×10−15

Poisson’s ratio ν 0.27
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ment, or the value provided by the manufacturer) were used in a deterministic
analysis first to verify the FE model with literature results. The cantilevers were
assumed to be isotropic and homogeneous, with one end fully clamped as the
boundary condition.
The models were built using a quadrilateral shell element provided by AN-

SYS. After a convergence test, approximately 27000 elements were used for
the rectangular model and 46000 elements for the V-shaped cantilever model.
Figure 7 illustrates an example of the output of dynamic analyses of both con-
figurations.

a)

b)

Fig. 7. The first mode of free vibration of: a) the rectangular cantilever
and b) the V-shaped cantilever.
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2.1. Rectangular cantilever

2.1.1. Dynamic FE modelling for natural frequencies. For the modal analy-
sis of the rectangular cantilever, the first three modes are shown in Table 3. The
nominal frequency values listed in the table indicate the frequencies obtained
with the nominal values of the parameters, while the minimum and maximum
are the frequencies from the corresponding minimum (95% of the nominal) and
maximum (105%) input parameters as listed in Table 1. The percentage values
in brackets in Table 3 are the differences to the nominals. It is clearly shown
that the ranges of difference from −16.1% to 19.4% are much bigger than the
5% variation in the input parameters.

Table 3. First three natural frequencies of the rectangular cantilever.

Mode Deformation
Natural Frequency [kHz]

Nominal Minimum Maximum

1st Flexure 247.74 207.83 (−16.1%) 295.73 (19.4%)

2nd Flexure 1546.9 1299.1 (−16.0%) 1750.0 (13.1%)

3rd Torsion 1607.7 1480.1 (−7.9%) 1845.0 (14.8%)

The stiffness k can be calculated analytically from the first natural frequency

(2.1) k = (2πf0)
2me,

where f0 is the first natural frequency of the cantilever vibration. The effective
massme is equal to the multiplication of the cantilever massm and a geometrical
factor n. n is proposed as 0.2427 by Sader et al. [9], or 0.25 by Cleveland
et al. [7]. Table 4 shows the value of the stiffness from Eq. (2.1) and the classic
beam theory. Again, big variations are shown from −16.1% and 49.2% to the
nominal values, corresponding to −5% and +5% change in the input values,
respectively.

Table 4. Stiffness obtained from the 1st natural frequency.

Nominal Minimum Maximum

1st natural frequency [kHz] 247.74 207.83 (−16.1%) 295.73 (19.4%)

Stiffness k
[N/m]

Eq. (2.1) with n = 0.2427 [9] 50.42 33.63 (−33.3%) 75.25 (49.2%)

Eq. (2.1) with n = 0.25 [7] 51.94 34.64 (−33.3%) 77.52 (49.2%)

Analytical k =
Et3w

4L3
49.73 33.24 (−33.2%) 74.02 (48.8%)
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2.1.2. Static FE modelling for stiffness. The static method is an alternative
way to calculate the stiffness using deflections under specific loading. In the FE
model, a point load of the magnitude of 1 and 10 µN was applied perpendicular
to the cantilever at its free end. Table 5 gives the deflection and the stiffness
calculated. Note that variations of deflection changes are the opposite sense to
those of the stiffness. The two loads produce identical stiffness under elastic
deformation.

Table 5. FEA results of the stiffness of the rectangular cantilever model.

Load Nominal Minimum Maximum

F = 1 µN
Deflection 0.019 0.028 (48.7%) 0.012 (−36.8%)

Stiffness K [N/m] 53.180 35.759 (−32.8%) 80.302 (51.0%)

F = 10 µN
Deflection 0.188 0.280 (48.9%) 0.125 (−33.5%)

Stiffness K [N/m] 53.180 35.759 (−32.8%) 80.301 (51.0%)

The stiffness is given as 53.18 N/m by the static FEM, 49.73 N/m by the
analytical modelling, 50.42 N/m by the dynamic FEM and 42 N/m by the
manufacturer, as compared is in Fig. 8. It shows that both FE models and the
theoretical method agree well, but with a notable difference (more than 20%)
to the value provided by the manufacturer.

Fig. 8. Comparison of the stiffness of the rectangular cantilever obtained by different methods.

2.2. V-shaped cantilevers

For the V-shaped cantilever, a randomness variation of ±5% was also intro-
duced in the input value of the parameter. Results of the dynamic FEM for the
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nominal, minimum and maximum values are shown in Table 6. The “magnified”
errors in the natural frequencies are given in brackets.

Table 6. The first five natural frequencies of V-shaped cantilevers
and differences to the normal value.

Mode Description
Natural frequency [kHz]

Nominal Minimum Maximum

1st Flexure 33.243 26.939 (−19.0%) 41.097 (23.6%)

2nd Flexure 171.797 141.644 (−17.6%) 208.652 (21.5%)

3rd Torsion 190.727 157.166 (−17.6%) 231.784 (21.5%)

The first mode is compared with the theoretical result and experimental
measurement [5] as given in Table 7, showing an error range within 8% for the
1st mode and 14% for the 2nd.

Table 7. Comparison of the 1st natural frequencies from theory,
experimental [5] and FEA.

Theoretical [kHz] Experimental [kHz] FEM [kHz]

34 31.5 33.2

A static FE analysis was also carried out with ±5% error introduced to the
input value, as shown in Table 8. Like in the realiser results, the increased errors
are clearly evidential.

Table 8. FEA results of the stiffness under different loads
for the V-shaped beam model.

Force Nominal Minimum Maximum

F = 1 µN
Deformation 10.289 14.766 (43.5%) 7.198 (−30.0%)

Stiffness K 0.0972 0.068 (−30.0%) 0.139 (43.0%)

F = 10 µN
Deformation 102.887 147.659 (43.5%) 71.981 (−30.0%)

Stiffness K 0.0972 0.068 (−30.0%) 0.139 (43.0%)

Results of different theoretical models [12–14], the dynamic FEM, and the
static FEM agree well except that of Albrecht [11], as shown in Fig. 9.
Results of finite element simulations clearly show an increased error bands

in the cantilevers stiffness and natural frequencies due to small variations in the
input values of cantilever dimensions and material property. For design and cal-
ibration purpose, the “error contribution” of each of the input parameters needs
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Fig. 9. Comparison of the stiffness of the V-shaped beam obtained by different methods.

to be investigated. In the following section, a sensitivity study is discussed, aim-
ing to identify the influence of the input parameters on the overall performance
of the cantilevers.

3. Sensitivity study

3.1. Mathematical model for sensitivity analysis

For both the rectangular and V-shaped cantilevers, a 5% variation in the pa-
rameter values leads to much bigger changes in the natural frequencies and the
stiffness. From the design view point, it is useful to know the scale of influence
of each parameter on the performance of the cantilevers. In this section, a sen-
sitivity analysis is presented on the significance of the dimension and material
parameters.
Sensitivity to a variable is defined by the first-order derivative of a function

with respective to the variable. For instance, for a multivariate function f(X)
with X representing the variable vector of k parameters, X = (x1, x2, · · · , xk),
the sensitivity of function fto its j-th parameter xj can be expressed as

(3.1) Si =
∂f(X)

∂xj
, j = 1, 2 , · · · , k.

A higher magnitude of Sj indicates a stronger sensitivity of f to xi. Note that
Sj can be both positive and negative for the correlation of f to xi.
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In the static analysis, the global governing equations is

(3.2) [K]{δ} = {F},

where [K] denotes the structure’s stiffness matrix, {δ} the nodal displacement
and {F} the external loading.
Taking partial derivatives of Eq. (3.2) and noticing that the external loading

F is independent of the structural and material parameters, thus
∂F

∂xj
= 0, we

have

(3.3)
∂{δ}
∂xj

= −[K]−1∂[K]

∂xj
{δ}.

From FEA, the nodal displacement {δ} can be calculated. Then the displacement
sensitivity

∂{δ}
∂xj
can then be obtained from equation (3.3).

For the dynamic analysis, the equation of free vibration can be expressed as

(3.4) [K]− λi[M ]{ϕi} = 0, i = 1, 2, · · · , n,

where [M ] is the mass matrix; λi the i-th eigenvalue of the natural frequency,
{ϕi} the i-the order eigenvectors; and n the total number of degree of free-
dom.
Taking partial derivative of Eq. (3.4) with respect to the parameter xj

yields in

(3.5)

(
∂[K]

∂xj
− ∂λi

∂xj
[M ]− λi

∂[M ]

∂xj

)
{ϕi} = 0.

Multiplying Eq. (3.5) on the left by {ϕi}T and introducing a generalized mass
mi = {ϕi}T [M ]{ϕi}, the sensitivity of the i-th order eigenvalue λi with respect
to the j-th parameter xj is

(3.6)
∂λi

∂xj
=

{ϕi}T
(
∂[K]

∂xj
− λi

∂[M ]

∂xj

)
{ϕi}

mi
.

The variation of input parameters in this study was limited within the range
from −5% to +5% of their nominal values and was chosen randomly based
on the uniform distribution assumption. After the value of the parameters was
randomly chosen, a finite element simulation was carried out. From the FE
results, the sensitivity data was calculated from Eqs. (3.3) and (3.6). This is
virtually a Monte Carlo approach when dealing with uncertainty in variables.
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A commercial code Isight (Dassault Systems Co) was used for the sensitiv-
ity study in connection with ANSYS. Isight picks up parameter values based
on random sampling for each parameter in a uniform distribution. The cho-
sen values were then used by ANSYS for simulation. The obtained FE results
are then used by the Isight again to calculate the partial derivatives to obtain
the sensitivity of the stiffness or the 1st natural frequency on individual input
parameter.

3.2. Sensitivity analysis results

The effect of the input parameter variables on the stiffness and the first
natural frequencies were obtained, as given in Fig. 10, for both the rectangular
and V-shaped micro-cantilevers. The notations of the legends are defined in
Fig. 4. In Fig. 10, the horizontal axes shows the range of variations of the
input parameters, and the vertical axes give the value of the magnitude of the

a) rectangular cantilevers b) V-shape cantilevers

Fig. 10. Effect of input parameters on the stiffness and the 1st natural frequency.
Parameter notations are defined in Fig. 4.
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stiffness or the 1st natural frequency. The influence appears to be all linear
approximately, due to the narrow range of variation.
For the rectangular cantilever in Fig. 10a, the cantilever length L has the

biggest impact overall on both the stiffness and the 1st natural frequency with
negative slopes, meaning that an increase in the length will lead to a reduc-
tion in the stiffness and the 1st natural frequency (ie. negative correlation).
This is expected from the classic beam theory as the flexural behaviour of a
cantilever is reversely proportion to the length of a beam. Useful conclusions
can be drawn from the figure. For instance, we can see that for every 1% in-
crease in the cantilever’s length, the natural frequency is reduced by approxi-
mately 5.0 Hz. For every 1% increase in beam thickness, the natural frequency
is increased by 2.5 Hz. The values of the slope of these linear relationships in
Fig. 10 are given in Table 9 for the significance of the influence of each para-
meter.

Table 9. Variation of the 1st natural frequency and the stiffness to 1% change
of each input parameter’s nominal value.

L t w E L1 b

Rectangular
1st Natural frequency [kHz] −4.98 2.49 0.04 1.24

Stiffness [N/m] −1.53 1.52 0.52 0.50

V-shaped
1st Natural frequency [kHz] −0.73 0.39 0.12 0.23 −0.03 −0.14

Stiffness [N/m] −0.003 0.003 0.001 0.001 −0.001 −0.0001

A pareto diagram is constructed in Fig. 11 to show the contribution of in-
fluence of the input parameters to the 1st natural frequency, as against the
overall influence (100%) by all parameters. Figure 11a shows that the contribu-
tion rate of the length L is found to be approximately 60%, and in the negative
correlation, while the thickness is the next most influential parameter for the
rectangular beam.
It is interesting to see that the thickness t has a much stronger effect for the

V-shaped cantilever, as seen in Fig. 11(b), even more than that of the length.
Considering the difficulty in controlling the thickness in the fabrication pro-
cess and in its measurement (in comparison to the length L), this should be
the parameter of utmost significance for the design, fabrication and calibra-
tion of the macro-cantilever in AFM. It is also noted that the Young’s modulus
has a bigger effect proportionally for the V-shaped cantilever than that for
the rectangular one (20% vs. 13%). It shows that different strategies should
be adopted in selecting parameters for the design and fabrication of different
cantilevers.
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a) rectangular cantilevers

b) V-shape cantilevers

Fig. 11. Contribution percentage of main parameters on the 1st natural frequency.

4. Conclusions

The finite element method was used to calculate the stiffness and the natural
frequencies of two micro-cantilevers commonly used in AFM. The dependence
of the behaviour of the rectangular and V-shaped cantilevers on the uncertainty
of their dimensional and material parameters was studied. The error limit in
this study was set at ±5% of the nominal value of the parameters which are
either the average of the measurement or the one provided by the manufacturer.
FE simulations show that the stiffness and the 1st natural frequency of both
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cantilevers vary at a much bigger range than the randomness limit introduced in
the design parameters. In order to enhance modelling accuracy, the measurement
precision of the dimensional parameters must be improved and variations in
material properties need to be minimised though strictly controlled fabrication
process.
A sensitivity analysis was used to study the influence of design parameters

on the 1st natural frequency and the stiffness. It was found that the main factors
affecting the accuracy are the length, the thickness, and the Young’s modulus,
among others. The cantilever length L has the greatest impact on the natural
frequency and the stiffness, and is in a negative correlation. In terms of signifi-
cance, the thickness of the cantilever t is the second parameter, and the Young’s
modulus E third, affecting the natural frequency with a positive correlation.
For the V-shaped cantilever, the cantilever thickness t affects the natural

frequency most in a positive correlation. This is followed by the length L in
a negative correlation. The effect of the Young’s modulus is similar to that of
a rectangular cantilever.
In this study, approximation was taken for a simplified fully clamped bound-

ary condition. Moreover, the material is assumed homogeneous and isotropic,
which is questionable. For instance, growth lines across the thickness of silicon
deposits can be seen in Fig. 5, which may contain oriented textures or defects,
resulting in non-homogeneity. All these may contribute to the relatively large
difference between the measured and modelled results. This remains to be fur-
ther studied.
This study provides a clear understanding on the influence of the uncer-

tainty of influential parameters on the behaviour of micro cantilevers used in
the AFM technology. It provides useful insights and guidance for the design and
calibration of micro cantilevers in AFM.
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