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ON PULSATILE HYDROMAGNETIC FLOW OF AN OLDROYD FLUID
WITH HEAT TRANSFER
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The problem of heat transfer to pulsatile flow of hydromagnetic viscoelastic fluid has been
studied. Expressions for the velocity, temperature distribution and mass flow rate are obtained.
The rate of heat transfer at the plates has also been calculated. These expressions are evaluated
numerically for various values of the parameters. The influence of pertinent parameters on
temperature, heat transfer coefficient and mass flux has been studied and numerical results
obtained are presented graphically.
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1. Introduction

The problems of fluid flow in a channel or pipe have been studied in re-
cent past by many scientists [1–7] with a focus to understand some physical
phenomena such as transpiration cooling and gaseous diffusion. In recent years,
considerable attention has been given to problems of heat transfer to pulsatile
fluid flows [7, 9–16]. The solutions of these problems play a vital role in the study
of blood flow in arteries [8, 17]. Radhakrishnamacharya and Maiti [9] have
made an investigation of heat transfer to pulsatile viscous fluid flow in a porous
channel. Later Ghosh and Debnath [11] analyzed the problem of heat trans-
fer to pulsatile flow in a viscoelastic fluid bounded by impervious rigid parallel
plates.

The present paper considers the heat transfer to the pulsatile hydromagnetic
flow of a viscoelastic fluid bounded by impervious rigid parallel plates separated
by a distance h. The fluid is driven by an unsteady pressure gradient. With
the assumption that the upper plate is at a temperature higher than the lower
one, the solutions for the steady and fluctuating temperature distributions are
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obtained. The rate of heat transfer at the plates is also calculated. Numerical
solutions are discussed with graphical representations. It is found that elastic
properties of the fluid significantly increase the temperature in the boundary
layers near the plates. The magnitude of heat transfer at the plates is also greatly
affected by elasticity of the fluid and the Eckert number.

2. Mathematical formulation

We consider the pulsatile flow of a viscoelastic fluid between two infinitely
long parallel plates, at a distance h apart, which is driven by the unsteady
pressure gradient

(2.1) −1

ρ

∂p

∂x
= A {1 + ε exp (iωt)} ,

where A is a known constant, ε is a suitably chosen positive quantity and ω
is the frequency. Let the x-axis be along one plate and y-axis normal to it.
The plate y = 0 and y = h are maintained at uniform temperatures T0 and
T1(> T0) respectively. It is assumed that the motion is slow so that all second-
order quantities may be neglected. A uniform magnetic field is imposed along
the direction normal to the flow. In the analysis, we assume that the induced
magnetic field is negligible.

This study is based upon the Oldroyd model of a viscoelastic fluid [6], and
the properties of such a fluid are specified by three constants η0, of the dimension
of viscosity, and λ1, λ2 of dimensions of time. The equations of the state relating

to stress tensor pik and the rate of strain tensor eik =
1

2
(ui,k+uk,i) of such fluids

are of the form

pik = p′ik − pδik,(2.2)
(

1 + λ1
∂

∂t

)

p′ik = 2η0

(

1 + λ2
∂

∂t

)

eik,(2.3)

where ui denotes the velocity vector, δik is the Kronecker delta, pik is the part
of the stress tensor related to the change of the shape of a material element, and
p is an isotropic pressure. The liquid (eii = 0) described by the above model
behaves as a viscous liquid if η0 > 0 and λ1 = λ2. The equations of motion
combined with constitutive equations of the hydromagnetic viscoelastic fluid are
given by

(2.4)

(

1 + λ1
∂

∂t

)

∂u

∂t
= −1

ρ

(

1 + λ1
∂

∂t

)

∂p

∂x

+ ν

(

1 + λ2
∂

∂t

)

∂2u

∂y2
−
(

1 + λ1
∂

∂t

)

σB2
0u

ρ
,
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(2.5) 0 = −1

ρ

(

1 + λ1
∂

∂t

)

∂p

∂y
,

where u is the fluid velocity in the x-direction, σ is the electrical conductivity
and B0 is an imposed uniform magnetic field. The energy equation is

(2.6) ρ Cp
∂T

∂t
= χ

∂2T

∂y2
+ µ

(

∂u

∂y

)2

,

where ρ, Cp, χ, µ, ν are respectively the density, specific heat, thermal conduc-
tivity, coefficient of dynamic viscosity and coefficient of kinematic viscosity, and
λ1 and λ2 are the relaxation and retardation times respectively.

The boundary conditions are

u = 0, T = T0 at y = 0,(2.7)

u = 0, T = T1 at y = h.(2.8)

The solution of (2.4) has the form

(2.9) u∗ =
u

(

Ah2

ν

) = u0 + εu1e
iτ ; τ = ωt,

where

u0 =
1

H2

{

1 − sinhH(1 − η) + sinhHη

sinhH

}

,(2.10)

u1 =
1

β2
2

{

1 − sinhβ1(1 − η) + sinhβ1η

sinhβ1

}

(2.11)

with

η =
y

h
, H2 =

h2σB2
0

µ
, R2

∗
=
ωh2

ν
, ν =

µ

ρ
, β2 =

1 + iF1

1 + iF1F2
,

(2.12)
F1 = λ1ω, F2 =

λ2

λ1
(< 1) ,

β2
1 = β2

(

H2 + iR2
∗

)

, β2
2 = H2 + iR2

∗

It can be noted that the results for viscous fluid correspond to the case
λ2 = λ1, i.e. F2 =1, independent of the values of F1.
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Introducing (2.12) and the dimensionless temperature

(2.13) θ =
T − T0

T1 − T0

in (2.6), the energy equation becomes

(2.14) R2
∗

∂θ

∂τ
=

1

Pr

(

∂2θ

∂η2

)

+ Ec

(

∂u∗

∂η

)2

,

where Pr =
µCp
χ

is the Prandtl number, and Ec =
A2h4

ν2Cp(T1 − T0)
is the Eckert

number. The boundary conditions for θ are

θ = 0 at η = 0,(2.15)

θ = 1 at η = 1.(2.16)

In view of (2.9), the temperature θ can be assumed in the form

(2.17) θ (η, t) = θ0 (η) + εF (η) eiτ + ε2G1 (η) e2iτ .

Substituting (2.17) and u∗ in (2.14), equating the harmonic terms, retaining
coefficients of ε2 and solving the corresponding equations for θ0,F (η) and G1 (η)
with the help of (2.15) and (2.16), we obtain

(2.18) θ0 (η) = η +
PrEc
4H2

{

η (η − 1)

[

1 − (coshH − 1)2

sinh2H

]

+ 2

[

coshH − 1

H2 sinh2H

]

sinhHη. sinhH (1 − η)

}

,

(2.19) F (η) = −L (0)

{

coshNη +

(

1 − coshN

sinhN

)

sinhNη

}

+ L (η) ,

(2.20) L (η) = − 4β1PrEc
β2

2H sinhH. sinhβ1
. sinh

(

H

2

)

sinh

(

β1

2

)

{

1

β2
1 −N2 +H(H + 2β1)

cosh

[

(H + β1) (1 − 2η)

2

]

− 1

β2
1 −N2 +H(H − 2β1)

cosh

[

(H − β1) (1 − 2η)

2

]}

,
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(2.21) L(0) = L(1) = − 4β1PrEc
β2

2H sinhH. sinhβ1
. sinh

(

H

2

)

sinh

(

β1

2

)

{

1

β2
1 −N2 +H(H + 2β1)

cosh

(

H + β1

2

)

− 1

β2
1 −N2 +H(H − 2β1)

cosh

(

H − β1

2

)}

,

where

(2.22) N = n(1 + i), n = R∗

(

Pr
2

)1/2

,

and

(2.23) G1(η) = − 1

sinh
√

2N

[

G2(0) sinh
√

2N(1 − η)

+G2(1) sinh
√

2Nη
]

+G2(η),

(2.24) G2(η) =
PrEcβ

2
1

2β4
2 sinh2 β1

[

1 − coshβ1

N2

−
(

1 + cosh 2β1 − 2 coshβ1

2
(

2β2
1 −N2

)

)

cosh 2β1η

+
(sinh2β1 − 2 sinhβ1)

2
(

2β2
1 −N2

) sinh 2β1η

]

,

(2.25) G2(0) = G2(1) =
PrEcβ

2
1

2β4
2 sinh2 β1

[

1 − coshβ1

N2

−
(

1 + cosh 2β1 − 2 coshβ1

2
(

2β2
1 −N2

)

)]

.

The instantaneous mass flux Q may be obtained by integrating Eq. (2.9)
across the channel:

(2.26)
Q

(

Ah3

ν

) =
1

H2

[

1 + 2

(

1 − coshH

H sinhH

)]

+
εiωt

β2
2

[

1 + 2

(

1 − coshβ1

β1 sinhβ1

)]

.
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3. Rate of heat transfer

The rate of heat transfer per unit area at the plate η = 0 is given by

Q′

0 = − q0h

χ(T1 − T0)
=

(

∂θ

∂η

)

η=0

,

Q′

0 =

(

dθ0
dη

)

η=0

+ εeiωt
(

dF

dη

)

η=0

+ ε2e2iωt
(

dG1

dη

)

η=0

,

(3.1) Q′

0 = 1 +
PrEc
H2

{(

coshH − 1

sinh2H

)(

2 sinhH

H
+ (coshH − 1)

)

− 1

}

+ εeiωt









−NL(0)

sinhN
(1 − coshN)+

4β1PrEc
β2

2H sinhH sinhβ1
. sinh

(

H

2

)

sinh

(

β1

2

)















(H + β1) sinh

(

H + β1

2

)

β2
1
−N2 +H(H + 2β1)

−
(H − β1) sinh

(

H − β1

2

)

β2
1 −N2 +H(H − 2β1)























+ ε2e2iωt

{

−G2(0)
√

2N

sinh
√

2N

(

1 + cosh
√

2N
)

+
PrEcβ

3
1(sinh 2β1 − 2 sinhβ1)

2β4
2

(

2β2
1 −N2

)

sinh2 β1

}

=
(

θ′0
)

η=0
+ ε |D0| cos (ωt+ α0) + · · ·,

where D0 = D0r + iD0i and tanα0 = D0i/Dor.
Similarly, the rate of heat transfer per unit area at the plate η = 1 is given by

Q′

1 = − q1h

χ(T1 − T0)
=

(

∂θ

∂η

)

η=1

,

(3.2)

Q′

1 = 1+
PrEc
H2

[

1 −
(

coshH − 1

sinh2H

)(

(coshH − 1) +
2 sinhH

H

)]

+ εeiωt
{

−NL(0)

(

sinhN +

(

1 − coshN

sinhN

)

coshN

)
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(3.2)
[cont.]

− 4β1PrEc
β2

2H sinhH sinhβ1
. sinh

(

H

2

)

sinh

(

β1

2

)

[

H + β1

β2
1 −N2 +H(H + 2β1)

. sinh

(

H + β1

2

)

− (H − β1)

β2
1 −N2 +H(H − 2β1)

sinh

(

H − β1

2

)]}

+ ε2e2iωt

{

−
√

2NG2(0)

sinh
√

2N

[

cosh
√

2N − 1
]

+
PrEcβ

3
1

β4
2 sinh2 β1

[(

sinh 2β1 − 2 sinhβ1

2(2β2
1 −N2)

)

cosh 2β1−
(

1 + cosh 2β1 − 2 coshβ1

2(2β2
1 −N2)

)

sinh 2β1

]

}

=
(

θ′0
)

η=1
+ ε |D1| cos(ωt+ α1) + · · ·,

where D1 = D1r + iD1i and tanα1 = D1i/D1r.

4. Numerical results and discussion

In order to get the physical insight of the problem, velocity, temperature
field, mass flow and rate of heat transfer have been discussed by assigning nu-
merical values to various parameters obtained in mathematical formulation of
the problem and the results are shown graphically.

From Fig. 1a, it can be observed that when the frequency R∗ is small, the
unsteady velocity profile is almost parabolic. Also it can be noted that the un-
steady velocity decreases with the increasing values of the Hartmann number.
Part of the unsteady velocity profile is nearly linear as the frequency increases
and the maximum occurs in the central part of the channel, Fig. 1b. If the fre-
quency is large, the maxima of the velocity are shifted to the boundary layers
near the walls, Figs. 1c and 1d.

The effects of the velocity profiles for different values of the Hartmann number
and frequency parameter are shown in Figs. 2a and 2b. It can be observed from
Fig. 2a that the velocity u of the fluid in the x-direction decreases due to increase
of the Hartmann number H. As the frequency parameter increases, we can note
from Figs. 2b and 2c that velocity decreases

The magnitude of the mass flux of
Qν

Ah3
is plotted in Figs. 3a and 3b. It can

be observed that mass flux decreases as the frequency parameter and Hartmann
number increases.
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F1 = 0.2, F2 = 0.08, Pr = 100, R∗ = 0 F1 = 0.2, F2 = 0.08, Pr = 100, R∗ = 2

F1 = 0.2, F2 = 1, Pr = 100, R∗ = 9 F1 = 0.2, F2 = 1, Pr = 100, R∗ = 10

∗ ∗ H = 0, ∆ ∆ H = 1, + + H = 2, ωt = π/4

♦− · − ♦ H = 0, � − · − � H = 1, o − · − o H = 2, ωt = π/2

∗ − · − ∗ H = 0, ∆ − · − ∆ H = 1, + − · − + H = 2, ωt = 3π/4

♦ ♦ H = 0, � − � H = 1, o − · − o H = 2, ωt = π

Fig. 1. Unsteady velocity profiles.
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F1 = 0.2, F2 = 0.8, Pr = 100, R∗ = 1, ε = 0.1 F1 = 0.2, F2 = 0.8, Pr = 100, R∗ = 3, ε = 0.1

F1 = 0.2, F2 = 0.8, Pr = 100, R∗ = 3, ε = 0.2

∗ ∗ H = 0, ∆ ∆ H = 2, + + H = 8, ωt = π/4

♦ ♦ H = 0, ⊲ ⊲ H = 2, + − · − + H = 8, ωt = π/2

o o H = 0, � − · − � H = 2, ×− · − × H = 8, ωt = 3π/4

Fig. 2. Velocity profiles.
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F1 = 0.1, F2 = 0.2, Pr = 100 F1 = 0.1F2 = 1, Pr = 100

∗ ∗ H = 0, + + H = 0.2, ∆ ∆ H = 0.4, ωt = π/4

o − · − o H = 0, ♦− · − ♦ H = 0.2, ⊲ − · − ⊲ H = 0.4 ωt = π/2

⊳ ⊳ H = 0, � � H = 0.2, H = 0.4, ωt = 3π/4

Fig. 3. Magnitude of the mass flux.

In the problem under investigation, θ0 represents the steady temperature dis-
tribution in the fluid. The expression for θ0 given by (2.18) remains the same
for both a viscous and a viscoelastic fluid of Oldroyd type under similar condi-
tions. Figure 4 depicts the steady temperature profiles corresponding to θ0 for
various values of PrEc. The steady temperature profiles plotted in Figs. 4a, 4b,
4c are almost parabolic and temperature decreases with increase of the Hart-
mann number. Further it can be noticed that the increase in Hartmann number
decreases the rate of heat transfer. We note that there is no change in the char-
acter of the profiles as Ec varies. But as the Eckert number Ec increases, the
steady temperature increases. Regarding the rate of heat transfer in the steady
– state condition the reversal of heat flux from the fluid to the hotter plate takes
place when PrEc > 22 which, in turn, makes the hotter plate more hot. In fact,
the value of PrEc provides a measure of the amount of heat generated due to
friction which, in the present case, increases with the increase of the pressure
gradient. If the temperature difference between the plates is fixed, heat flows
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F1 = 0.2, F2 = 0.8, H = 0, Ec = 1, F1 = 0.2, F2 = 0.8, H = 2, Ec = 1,

F1 = 0.2, F2 = 0.8, H = 3, Ec = 1

∗ ∗ Pr = 300, ∆ ∆ Pr = 100, + Pr = 30,

o o Pr = 22, � � Pr = 1.

Fig. 4. Steady temperature profiles.

from the hotter plate to the fluid as long as the pressure gradient does not ex-
ceed a certain value, i.e for PrEc to be not greater than 22. This phenomenon
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is important for cooling at high pressure gradients. The effect of changing the
Hartmann number (for fixed Ec) and changing Eckert number (for fixed H) are
shown in Tables 1 and 2. Table 1 shows that the rate of heat transfer from the
lower plate decreases with Hartmann number, whereas it increases in the upper
plate. We observe from Table 2 that the rate of heat transfer from the lower
plate increases with Ec while at the upper plate, the heat flows from the fluid to
the plate even if T1 > T0.

Table 1.

Ec = 1, Pr = 100, R∗ = 1

H = 0 H = 1 H = 2 H = 3

(θ′0)η=0 17.6518 14.7787 9.5485 5.69695

(θ′0)η=1 −15.6518 −12.7787 −7.5405 −3.6969

Table 2.

Pr = 10, H = 1.5, R∗ = 1

Ec = 1 2 3 5

(θ′0)η=0 2.1123 3.2247 4.3371 6.5618

(θ′0)η=1 −0.11235 −1.22471 −2.33706 −4.56177

Fixing Pr and R∗, the instantaneous temperature profiles are plotted in

Figs. 5a–5e, enabling us to observe the effect of changing H (with Ec fixed)

and changing Ec (with H fixed). It also depicts the effect of changing values of

the elastic parameters F1 and F2. It can be noted that F2 =1 always represent

the case of a viscous fluid irrespective of the values of F1. From Figs. 5a–5e, it

can be seen that temperature decreases as H increases. The temperature profiles

are almost parabolic for small values of H, but they oscillate more for large val-

ues of H and the maximum temperature is shifted to the boundary layers near

the walls. The temperature increases rapidly with increase in Ec, which may be

due to high viscous dissipation. Comparison of Figs. 5b and Fig. 5c shows that

the presence of the elasticity of the fluid increases the temperature in a region

near the plate and gradually diminishes the same at the central part of the chan-

nel. This study indicates that the temperature in a viscoelastic fluid increases

rapidly with the increase of Ec and also interestingly we find that the increase of

temperature near the plate occurs mainly due to the increase of the relaxation

time of the fluid, while the increase in retardation time of the fluid produces

a gradual decrease of temperature at the central part of the channel. It can be
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observed that there is no significant change in the character of the profile as Ec
varies.

The effect of changing elastic parameters and changing H (for fixed Ec) and

changing R∗ (for fixed Ec) and changing Ec (for fixed H), on the values of the

amplitude and phase of the rate of heat transfer is shown in Tables 3, 4 and 5. In

Table 3, it is observed for a viscoelastic fluid the increase in Hartmann number

decreases the amplitude of heat transfer at both the plates. There is a phase lag

at both the plates when the fluid is viscoelastic. It may be observed from Table 4

that at the lower plate there is a phase lag at higher frequency, but at the upper

plate there is a phase lead. We also find that at both the plates the amplitude

decreases uniformly with frequency for fixed Ec. It can be noticed from Table 5

for fixed R∗ the amplitude increases uniformly with Ec at both the walls. The

increase of the Eckert number Ec increases the amplitude of heat transfer at the

plates for the viscoelastic fluid, while the phase at the plates remains unaffected

by the increase of Ec.

Table 3.

Pr = 200,R∗ = 10, F1 = 0.1,F2 = 0.5, Ec = 3

H |D0| |D1| tanα0 tanα1

0 0.261855 0.0231703 −29.0306 12.9313

0.2 0.260977 0.0231044 −28.8304 12.8729

0.4 0.258385 0.0229097 −28.2463 12.7017

Table 4.

Pr = 200, F1 = 0.1, F2 = 0.4, H = 0.3, Ec = 5.

R∗ |D0| |D1| tanα0 tanα1

5 2.73881 0.265488 −61.0054 5.35171

10 0.649884 0.0575502 −25.151 14.5618

15 0.29009 0.0244279 −29.1139 33.4444

Table 5.

Pr = 200, F1 = 0.1, F2 = 0.5, H = 0.2, R∗ = 5.

Ec |D0| |D1| tanα0 tanα1

5 2.74875 0.266414 −84.1425 5.12845

10 5.49751 0.532828 −84.1425 5.12845

15 8.24626 0.799242 −84.1425 5.12845
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F1 = 0.02, F2 = 0.05, H = 0, Pr = 100, F1 = 0.02, F2 = 0.05, H = 2, Pr = 100,

R∗ = 1, Ec = 1, R∗ = 1, Ec = 5

∗ ∗ ωt = 0, ∆ ∆ ωt = π/4,

o o ωt = π/2 + + ωt = 3π/4

F1 = 0.02, F2 = 1, Pr = 100, R∗ = 1, Ec = 2, F1 = 0.02, F2 = 1, Pr = 100, R∗ = 1, Ec = 4,

[Fig. 5]
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F1 = 0.02, F2 = 1, Pr = 100, R∗ = 2, Ec = 2

H = 2 ωt = 0, ∗ − · − ∗, H = 0, ωt = 0,

♦ ♦ H = 2 ωt = π/4, ∆ − · − ∆ H = 0, ωt = π/4,

× × H = 2, ωt = π/2, o − · − o H = 0, ωt = π/2,

⊳ ⊳ H = 2, ωt = 3π/4, + − · − + H = 0, ωt = 3π/4.

Fig. 5. Unsteady temperature profiles.
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