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Several parameters can affect the fatigue delamination growth in laminates – these in-
clude e.g. constituent material properties and/or composite shape. Knowledge about effects
of these parameters can lead to a better understanding of the fatigue delamination behaviour
and can also pinpoint directions for optimum composite design. These effects can be elucidated
by carrying out an appropriate sensitivity analysis. A FEM-based computational approach to
sensitivity analysis is proposed in this work to study composite parameter effects in a fatigue
delamination problem of an elastic two-layer composite. It is used to calculate and analyse sen-
sitivity gradients of the fracture parameter and fatigue cycle number with respect to composite
design parameters such as layer elastic constants. It is observed that sensitivities computed
from this approach are generally numerically stable. Obtained sensitivities pinpoint quantita-
tively the most and least important composite parameters that govern a fatigue delamination
process. Sensitivity results are verified by another computational approach and a very good
agreement is found.

Key words: layered structures, fatigue delamination, sensitivity analysis, finite element
analysis.

1. Introduction

Composite laminates, such as classical fibre-reinforced laminates or hybrid
composites, are utilised in many fields of modern engineering, where they are
subjected to either static or cyclic (fatigue) loads [1]. The most common mode
of failure of these materials is interlaminar fracture (delamination). Delamination
growth can lead to a loss of structural integrity and hence – to catastrophic com-
posite failure [2]. Therefore, a large amount of research, both experimental and
theoretical, has been already undertaken to better understand that phenomenon
under applied static or cyclic loads.
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It is known that several factors can affect delamination growth such as envi-
ronmental conditions, constituent material properties or a component geometry
[3–5]. However, to the best knowledge of the authors there has not yet been
carried out any detailed research concerning effects of these parameters on the
fatigue delamination behaviour of composite laminates. The authors believe that
it is necessary for a better understanding of a delamination phenomenon and for
further, improved design and optimisation of layered materials. Therefore, an
attempt to elucidate the effects of composite parameters is undertaken in this
work by exploiting a concept of sensitivity analysis [6].

The sensitivity analysis is an introductory step to structural system optimi-
sation [7] and reliability estimation [8]. Evaluation of sensitivities is a central
point of the sensitivity analysis. These sensitivities map the changes of system
design parameters (e.g. elastic constants or geometry) onto changes in the system
objective parameters such as a composite effective property [9, 10] or composite
fatigue life [11]. This in turn provides a relationship between design and objective
parameter changes and enables to estimate the significance (or insignificance) of
design parameters. This information can further be used in design optimisation
of e.g. composite fatigue performance [12] or probabilistic fatigue analysis [13].
The sensitivities can be obtained using various approaches, e.g. by analytical
derivation of partial derivatives, by finite difference approximation of partial
derivatives, by automatic differentiation of numerical procedure, by computa-
tional implementation of explicit differentiation in the finite element method
(FEM) codes or some probabilistic approaches [6, 8, 14–19]; utilisation and ef-
ficiency of each of these approaches depends on the boundary value problem at
hand. From the engineering point of view, the sensitivity analysis is particularly
very useful, when it is formulated in the framework of one of the numerical meth-
ods such as the finite element method (FEM) or the boundary element method
(BEM). The advanced state of the FEM and related software provides a reliable
tool for composite analysis, but it gives a composite engineer only little help in
identifying the ways to modify composite design to improve the desired qualities.
Using the design sensitivity information generated by strategies exploiting the
FEM formulation and software, the composite engineer would be able to carry
out a systematic trade-off analysis and improve the composite design.

The main goal of this paper is to present a computational approach for cal-
culation and analysis of sensitivities for a fatigue delamination problem of an
elastic two-component laminate. This approach combines a fatigue delamina-
tion model with the concept of finite differences and it is implemented using
the FEM-based program ANSYS. The developed approach is used to compute
sensitivities of the total energy release rate and fatigue life, to reveal the most
crucial design parameters of a two-component composite laminate. This paper
starts with a description of the fatigue delamination model and sensitivity calcu-
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lation with finite differences. Further, computer implementation of the approach
is presented. A computational illustration utilising a two-component laminate
subjected to cyclic shear loads is presented and discussed.

2. Fatigue delamination model and senstivities

A composite system composed of two layers, Ω1 and Ω2 is considered here and
shown in Fig. 1. The two layers are assumed as isotropic linear-elastic materials
defined by the elasticity tensor Cn in terms of two elastic engineering constants,
i.e. Young’s modulus En and Poisson’s ratio νn, and n denotes the n-th (n = 1, 2
in this work). It is assumed that there exists a delamination over some portion
of a curved interface between those two layers, denoted by Γc(n). The other part
of the curved interface is assumed as perfectly bonded and denoted by ΓI . The
interface itself is assumed to have a vanishing thickness, i.e. tI → 0 and its
curvature is denoted by a radius RI .
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Fig. 1. Two-component model of a delaminated composite laminate.

The composite system is subjected to cyclic loads of constant amplitude
∆σ = σmax − σmin = const. and load ratio R = σmin/σmax = 0 applied to the
composite boundary Γσ(n) (cf. Fig. 1); σmax and σmin denote the maximum and
minimum values of applied loads. The composite is supported on the portion of
its boundary denoted by Γu(n) (cf. Fig. 1).

It is assumed that under these boundary conditions the fatigue delamination
growth per cycle N can be described by the modified Paris law as follows:

(2.1)
da

dN
= C(GT )m,
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where GT is the total energy release rate (the crack driving force parameter)
such that GT = ∆GT = GT,max – it is assumed that the minimum total energy
release rate at a cycle does not influence the fatigue delamination growth under
R = 0 (GT,min = 0). Then, C and m are the empirical constants. The model
describes a stable fatigue crack growth along the selected crack path.

Then, two situations that can occur at the delamination tip during propaga-
tion under applied fatigue load are considered in this work, i.e. 1) opened and
2) closed delamination tips as shown in Fig. 2.

a) b)

Fig. 2. Near-tip behaviour during fatigue delamination a) opened crack tip
b) closed crack tip.

In the case when the tip is opened during propagation, i.e. when the gap gN

at the tip is larger than zero (cf. Fig. 1), the stress distribution around the tip is
assumed to be governed by the so-called oscillatory solution of the linear fracture
mechanics for interface cracks [21]. In addition, since the crack propagation along
the interface (without kinking out or branching) is analysed here, therefore it is
sufficient to account for stresses ahead of the delamination tip i.e. for θ = 0 as
follows:

(2.2) σ22(t) + iσ12(t) =
1√
2πr

(K1 + iK2)riε
o

(
r

ro

)iε

,

where σ22(t) and σ12(t) denote normal and shear stresses near the delamination tip
– since R = 0 then σij(t) = ∆σij(t) = σij(t,max), where σij(t,max) denotes the tip
stresses at the maximum applied load during a single cycle. Then, K1 and K2 are
real and imaginary components of the complex stress intensity factor K, which
similarly to crack tip stresses correspond to maximum load in a single cycle.
Further, ro is a characteristic length as an attempt to produce dimensionally
meaningful results for K1 and K2. Finally, ε is an oscillation index (or mismatch
parameter) given as follows [21]:

(2.3) ε =
1
2π

ln
(

1− β

1 + β

)
,
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where β is the second Dundurs mismatch parameter given by

(2.4) β =
µ1 (κ2 − 1)− µ2 (κ1 − 1)
µ1 (κ2 + 1) + µ2 (κ1 + 1)

,

where µn is the shear modulus and κn denotes the Kolosov constant such that
κn = 3− 4νn for plane strain conditions and κn = (3− νn)/(1 + νn) under plane
stress conditions; n denotes the n-th layer.

Then, for the cyclic variation of applied stress and R = 0, propagation of a
delamination with an opened tip is controlled by the total energy release rate,
expressed as follows:

(2.5) GT =

(
1− β2

)

Eeff

[
(K1)

2 + (K2)
2
]
,

where the effective Young’s modulus Eeff is given by

(2.6) Eeff =
2E1E2

E1 + E2

,

where En = En

/
(1− νn)2 under plane strain conditions and En = En under

plane stress conditions. In order to calculate the total energy release rate one
needs to know K1 and K2. They can be obtained from stresses (Eq. (2.2)) and
the well-known Euler relations

(2.7) eiϕ = cosϕ + i sinϕ and e−iϕ = cosϕ− i sinϕ,

as follows:

K1 =
√

2πr

{
σ22(t) cos

(
ε ln

[
r

ro

])
+ σ12(t) sin

(
ε ln

[
r

ro

])}
,(2.8)

K2 =
√

2πr

{
σ12(t) cos

(
ε ln

[
r

ro

])
− σ22(t) sin

(
ε ln

[
r

ro

])}
.(2.9)

In the case when the delamination propagates with a closed tip (cf. Fig. 2b),
i.e. when the gap gN at the crack tip equals zero (cf. Fig. 1) and delamination
surfaces slide over each other, shear stresses along the interface ahead of the
crack tip are assumed to have the following form:

(2.10) σ12(t) =
K2

(2πr)λ
,
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where λ describes a stress singularity that depends on the friction coefficient f
in the following way:

(2.11) cot(λπ) = fβ,

where β is described by Eq. (2.4).
Then, the delamination propagation with a closed tip under applied cyclic

loads of R = 0 is governed by the following total energy release rate [22]:

(2.12) GT =
(K2)

2 sinλπ

2γ (1− λ) (2π)2λ
∆a1−2λ

[
Γ (2− λ) Γ (1− λ)

Γ (3− 2λ)
− cosλπ

2 (1− λ)

]
,

where γ is a parameter described in terms of µn, κn and β and given by

(2.13) γ =
4µ1µ2

µ2κ1(1 + β) + κ2µ1(1− β) + 2
,

and Γ (.) is the Euler gamma function. The delamination driving force GT de-
scribed in Eq. (2.12) is dependent on the crack extension, ∆a, which must be
finite because GT diminishes as ∆a → 0 and λ < 0.5, while it becomes un-
bounded as ∆a → 0 and λ > 0.5 as reported in [22].

Then, the fatigue life of a delaminated composite can be predicted by inte-
grating Eq. (2.1) from an initial delamination length, ao, to the one that corre-
sponds to a composite failure, af , as follows:

(2.14) Nf =

af∫

ao

da

C(GT )m
.

In order to determine numerically the fatigue cycles number at failure, the
delamination length range from ao to af is divided into equal crack increments,
∆a = ai+1−ai. Hence, the fatigue life is obtained as the sum of all fatigue cycle
number increments as follows:

(2.15) Nf =
n∑

i=1

Ni and Ni =

ai+1∫

ai

da

C(GT (ai))m
.

As it can be seen directly from Eqs. (2.14) and (2.15), the fatigue life or increment
of fatigue cycles depends on the initial delamination length ao, constants C and
m, the crack driving force GT and material properties such as the n-th layer
Young’s modulus En. The sensitivity analysis allows to estimate the influence
of each model parameter on the fracture parameter, fatigue cycle increment
during delamination propagation, and finally on the composite fatigue life. In this
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work, that influence is estimated in terms of sensitivity gradients (sensitivities).
The sensitivity gradients of the composite fatigue life are approximated by the
forward finite difference as follows:

(2.16) S =
Nf (bk + ∆bk)−Nf (bk)

∆bk

or by an alternative expression using the central finite difference

(2.17) S =
Nf (bk + ∆bk)−Nf (bk −∆bk)

2∆bk
,

where bk denotes a nominal value of a design parameter such as En or hn and
∆bk is an infinitesimally small variation of a design parameter about its nominal
value bk.

The main issue related to sensitivity calculations through finite and central
difference approaches is the numerical stability (or instability) of sensitivities.
Therefore, a proper choice of the design parameter increment, ∆bk, is required.
The main advantage of the central finite difference approximation over the for-
ward one is that it allows a larger value of ∆bk to be selected. This also permits
avoiding problems associated with small parameter increments, such as numeri-
cal round-offs. However in practice, it is usually possible to find an appropriate
parameter increment associated with the forward finite difference that provides
numerically stable sensitivities.

Eqs. (2.16)–(2.17) express a sensitivity measure, which is inconvenient in
cases where sensitivities of Nf with respect to different design parameters must
be characterised and compared. Since it is the case in this work, thus, the relative
sensitivity or classical sensitivity due to Bode [23] is utilised here and given by

(2.18) Srel =
∂(lnNf )
∂(ln bk)

=
∂Nf/Nf

∂bk/bk
=

∂Nf

∂bk

bk

Nf
,

which provides a dimensionless sensitivity measure appropriate for comparative
purposes. It is mentioned that an analogous expression for the fracture parameter
GT can be obtained by replacing Nf .

It must be mentioned that in this work, the sensitivities are calculated with
respect to a single parameter change, ∆bk, i.e. only a single design parameter
is subjected to a perturbation when the sensitivity is calculated. Calculation of
sensitivities, when more than one design parameter is perturbed, would be more
general, but it should account for some correlations between particular design
parameters. In that case it might be more appropriate to use a probabilistic
approach for calculation of sensitivities [24] rather than the current concept.
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3. Computer implementation using ANSYS

Efficient numerical evaluation of relative sensitivities, given by Eq. (2.18),
demands a development of a numerical approach and its computer implementa-
tion. In this work, the FEM is chosen as a tool to solve a boundary value problem
for displacements, and then strains and stresses. Hence, the fatigue delamination
model and relevant equations for sensitivity measure are combined together and
implemented into the FEM-based package ANSYS. In particular, the advantage
is taken of the ANSYS Parametric Design Language (APDL), which permits
obtaining sensitivities from equations coded up in the postprocessor. Hence, this
implementation does not demand any access to the source code of ANSYS.

A numerical strategy proposed to compute sensitivities in this work, is
sketched schematically in Fig. 3 and described below in a detail.

Selection

· Design parameter

· Design parameter perturbation

· Delamination growth range

· Delamination increment

Computation of absolute

sensitivity gradients

· Forward finite difference

· Central finite difference

Computation of relative

sensitivity gradients

FEM-based model

· Model

· Boundary value problem solution

Computation

· Fracture parameter

· Cumulative fatigue cycles number

Fig. 3. Flowchart for computation of sensitivities.

The first step is to select a design parameter (e.g. layer Young’s modulus),
its perturbation as well as to define delamination propagation range (using ao

and af ) and delamination increment (∆ai). In the next step, a FEM model of
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the problem must be built using a pre-processor of ANSYS. Each FEM model
parameter such as material or geometrical parameter is defined parametrically
to allow for a full flexibility for sensitivity computations. Then, a boundary value
problem needs to be solved using the FEM for a selected design parameter value
and its increment, at required delamination lengths. Hence, considering a two-
layer composite with a delamination (Fig. 1) subjected to arbitrarily prescribed
loads, one needs to solve the following general differential boundary value prob-
lem:

Div(σn) = 0 x ∈ Ωn,(3.1)

εn =
1
2

[∇(un) +∇(un)T
]

x ∈ Ωn,(3.2)

σn = Cnεn x ∈ Ωn,(3.3)

σnnn = tn x ∈ Γσ(n),(3.4)

un = 0 x ∈ Γu(n),(3.5)

τ = f |p| for gN ≤ 0 x ∈ Γc(n),(3.6)

τ = p = 0 for gN > 0 x ∈ Γc(n),(3.7)

where σn = σn(bk) is the stress tensor at a point in the interior of the n-th
composite constituent Ωn; εn = εn(bk) is the strain tensor written in terms of
the displacement field in un = un(bk); nn is the unit vector that is normal to the
surface of the composite constituent; tn denotes the applied surface tractions on
Γσ(n); f is the friction coefficient that approximates roughness of delaminated
composite parts (contact surfaces); p and τ denote the contact pressure and
frictional stresses along the crack surfaces remaining in contact.

The boundary value problem (3.1)–(3.7) is complemented by conditions of
stress equilibrium (normal and shear components only) and continuity of dis-
placement across the uncracked portion of the interface, denoted by ΓI . It should
be mentioned that the boundary value problem presented above is general, and
its specific form, i.e. under prescribed shear loads, is solved using ANSYS in this
work.

The problem is primarily solved for displacements, and then strains and
stresses are computed for each value of the design parameter bk. Then, the
total energy release rate, GT , can be obtained using crack-tip stresses from
Eqs. (2.8)–(2.9), what in turn enables calculation of the fatigue cycles number,
Nf . It is mentioned that stress intensity factors K1 and K2 required to calculate
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GT are obtained by a linear extrapolation of stress intensity factors determined
at finite element nodes at θ = 0 over a selected distance r (cf. Fig. 2). The
extrapolation technique is based on the least squares method to give

(3.8) K1,2 =

nk∑
i=1

Ki(1,2) − d
nk∑
i=1

yi

nk
,

where

(3.9) d =
nk

(
nk∑
i=1

Ki(1,2)yi

)
−

(
nk∑
i=1

Ki(1,2)

)(
nk∑
i=1

yi

)

nk

(
nk∑
i=1

y2
i

)
−

(
nk∑
i=1

yi

)2 ,

where yi is the distance between the i-th node ni and the delamination tip; nk

is the number of nodes used in the extrapolation of nodal stress intensity factors
Ki(1,2).

The boundary value problem described by Eqs. (3.1)–(3.7) is solved for a se-
lected design parameter at subsequent crack lengths until the final delamination
length af is reached. When that is the case, the entire procedure (i.e. solution
of the boundary value problem and fracture parameter calculation as well as
fatigue cycle increment) is repeated for a new design parameter increment. This
is done to study the numerical stability of sensitivities calculated from the finite
difference concept. Results of calculations, in terms of the fracture parameter and
fatigue cycle number are written to output files at each delamination length and
design parameter increment. After the computational procedure is completed
for the last design parameter increment, then sensitivity calculations begin. The
absolute sensitivities are calculated first, using forward and/or central finite dif-
ference methods. Then, relative sensitivities are obtained by appropriate scaling
of absolute sensitivities according to Eq. (2.18). The entire computational process
is repeated for all design parameters of interest. That process is coded up into
ANSYS such that it does not need any user interference, when sensitivities are
calculated for a single design parameter – i.e. the computational process is run
automatically at each delamination length and design parameter perturbation
until a = af . However for the time being, a change in the design parameter (e.g.
Young’s modulus) to the layer thickness must be done manually by the user.

The solution of the boundary value problem is the most expensive step of
the approach, in terms of computational time. It will obviously be less expen-
sive for linear elastic problem, while the computational costs will increase with
introduction of geometrical and physical nonlinearities.
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4. Computational example

4.1. FEM model

Accuracy and applicability of the approach presented in the Sec. 3 is evalu-
ated on an example related to a two-component boron/epoxy-aluminium (B/Ep-
Al) curved composite (cf. Fig. 4). This composite laminate represents a simpli-
fied repeated element of a hybrid-like composite laminate, which is utilised in
aerospace applications – frequently in large curved parts of the aircraft fuselage.
Both layers have the same nominal thickness h1 = h2 = 2.5×10−3 m, then com-
posite width is w = 5×10−3 m, while the interface curvature is described by the
nominal radius value RI = 5.25 × 10−2 m. B/Ep component is considered as a
linear elastic and isotropic material with the Young modulus E1 = 207 GPa and
Poisson’s ratio ν1 = 0.21. This is only a rough approximation to the real situa-
tion where B/Ep component behaves as an anisotropic and viscoelastic material,
depending on the volume fraction of the boron reinforcement. The Al component
is also considered as linear elastic and isotropic with the corresponding material
properties E2 = 70.8 GPa and ν1 = 0.33. Here the real situation is simplified
by assuming that the yield stress of aluminum is very high. The interface is
modelled as a zero thickness layer with no assigned material properties.

Cycles number

smax=sQ=100 MPa

smin=0

Load, s

0 1 2

B/Ep

Al

sQ

a;Q

af;Qf

h1

h2

Crack tip
Crack

Interface (non-cracked)

RI

s;q

Fig. 4. Two-layer boron/epoxy-aluminium curved composite under cyclic shear.

The composite structure contains an initial delamination of length a = ao =
5.498 × 10−3 m (Θ = Θo = 6 deg) located at the interface between layers.
Then, the total interface length, including cracked and perfectly bonded parts
of the interface, is equal to a = af = 1.835 × 10−2 m (Θ = Θf = 20 deg).
The nominal value of the interface friction coefficient is selected arbitrarily and
equal to f = 0.05. Then, the nominal value of the fatigue law exponent is equal
to m = 10. The nominal value of the fatigue law constant is equal to C =
1 × 10−29 and it was evaluated based on the knowledge of the total energy
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release rate threshold, GT,th = 100 J/m2 as well as the delamination growth
threshold, (da/dN)th = 1 × 10−9 m/cycle according to the concept reported in
[25].

The composite laminate is subjected to cyclic shear loads with a triangular
profile shown in Fig. 4. Shear type of loading is designed by constraining com-
posite edges in the radial direction and additionally imposing supports on the
upper component in the angular direction. The cyclic load of σΘ = 100 MPa is
applied to lower composite constituent (with thickness h2) in the angular direc-
tion. It is noted that the aforementioned boundary conditions simulate those of
a proposed compression shear fracture test for curved and flat layered specimens
[26].

Both layers are discretised by eight-node solid elements PLANE82, while the
crack surfaces – by contact elements pairs CONTA172-TARGE169 as shown
in Fig. 5. The mesh is designed here in such a way that the contact elements
number changes only along with the crack length from 42 (a/ao = 1) to 94
(a/ao = 3.167), while the solid elements number is fixed and equal to 2224. Spe-
cial attention is focused on the discretisation of the near-tip domain to simulate
properly the stress singularity. A single row of quarter-point elements with radius
r1 = 1× 10−6 m discretises the crack tip vicinity and the mesh becomes coarser
far away from the crack tip as shown in Fig. 5. Investigation of the influence
of different r1 values on the total energy release rate is shown in the following
subsection.

Solid finite elements: PLANE82

Near crack-tip region

Finite elements contact pairs:

CONTA172-TARGE169 Crack surface

Fig. 5. FEM discretisation of composite domain and crack surfaces.

The augmented Lagrange method implemented in ANSYS was utilised to
compute contact constraints. Computation of frictional stresses and resulting
slip was possible with the so-called radial return algorithm available in ANSYS.
Solution was obtained via the full Newton–Raphson incremental-iterative tech-
nique, and the line search option was used to enhance the solution convergence.
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4.2. Total energy release rate

Accurate calculation of the total energy release rate is a key step in deter-
mination of fatigue cycle number and then proper evaluation of relative sensi-
tivities of fracture parameter and fatigue life. Therefore, results obtained from
the current model are verified by those obtained using the virtual crack closure
method (VCCM) as reported in [27]. Mixed mode formulation of the VCCM
for singular elements is used. Results are compared for three different values of
r1 = 0.5 × 10−6, 1 × 10−6 and 5 × 10−6. It must be mentioned that a careful
investigation of the delamination growth revealed that the crack tip was opened
for all crack lengths under the considered boundary conditions. However, the
delamination was opened only in the vicinity of the crack tip, while delaminated
surfaces were in frictional contact with each other, away from the crack tip.

Table 1. Comparison of the fracture parameter GT for a/ao = 1.

r1 [m] GT [J/m2] (from Eq. (2.5)) GT [J/m2] (from the VCCT)
5× 10−6 123.826 118.603
1× 10−6 121.648 120.579

0.5× 10−6 120.661 127.466

Therefore, the fracture parameter was computed from Eq. (2.5) and its results
are verified against those obtained from the VCCT, and shown in Table 1 for the
normalised crack length a/ao = 1. In addition, the fracture mode 2 of the fracture
parameter, G2, prevails for all crack lengths, so GT ≈ G2. Fracture parameter
values obtained from Eq. (2.5) are only slightly sensitive to the value of r1 as
shown in Table 1, contrary to those obtained from the VCCT, which increase
as r1 decreases. However, a good agreement between these two approaches is
obtained for r1 = 1× 10−6. Therefore, the total energy release rate determined
from Eq. (2.5) and that value of r1 is used in all sensitivity calculations.

4.3. Interpretation of sensitivity analysis results

Interpretation of sensitivity results is presented with some selected examples,
where the relative sensitivity Srel of the total energy release rate and the fatigue
cycles number is obtained with respect to composite parameters. The sensitivi-
ties are calculated for three different parameter increments, 0.1%, 1% and 10%.
A simple engineering interpretation of relative sensitivity gradients of the frac-
ture parameter and fatigue cycle number, is that if a particular gradient is less
than 0, an increase of composite parameter (e.g. layer Young’s modulus) ac-
companies the reduction of the objective parameter (fracture parameter and/or
fatigue cycle number). Otherwise (the relative sensitivity greater than 0), an in-
crease of the design parameter results in an appropriate increase of the objective
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parameter. Ultimately, if the sensitivity is comparable to 0, then the given design
parameter does not influence the objective parameter.
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Fig. 5. FEM discretisation of composite domain and crack surfaces  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Relative sensitivities of the fracture parameter with respect to the Young’s modulus E1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Relative sensitivities of the fracture parameter with respect to the layer thickness h2  
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Fig. 6. Relative sensitivities of the fracture parameter with respect to the Young’s
modulus E1.
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Fig. 5. FEM discretisation of composite domain and crack surfaces  
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Fig. 7. Relative sensitivities of the fracture parameter with respect to the layer thickness h2  
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Fig. 7. Relative sensitivities of the fracture parameter with respect to the layer thickness h2.

For example, results of relative sensitivities of the total energy release rate
with respect to the Young’s modulus of the upper layer Srel(E1), thickness of
the lower layer Srel(h2) and the interface radius Srel(RI), are shown in Figs. 6–8,
as functions of a normalised delamination length, a/ao. This enables to demon-
strate evolution of relative sensitivities as the crack propagates. An interesting
behaviour is shown in Fig. 6, where the relative sensitivity is positive at short
delamination lengths and then changes its sign for large crack lengths. Thus, an
increase of the upper layer Young modulus leads to an increase of the fracture
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parameter at short delamination lengths, whereas an opposite situation (reduc-
tion of the fracture parameter for increasing Young’s modulus) is observed at
large crack lengths. Hence, there exists a point where the sensitivity equals zero
so the fracture parameter value is not affected by the change of the investigated
design parameter (the upper layer Young’s modulus in this case). Then, the rel-
ative sensitivities of the total energy release rate with respect to the thickness of
the lower layer, h2, are shown in Fig. 7. It is possible to observe from that figure
that the fracture parameter increases with increasing layer thickness. Addition-
ally, the relative sensitivities increase as the delamination propagates. A similar
situation is observed in Fig. 8, where the relative sensitivities are positive during
nearly entire range of crack growth (excluding some numerical instabilities near
the shortest delamination length). However, a quantitative difference between
results in Figs. 7 and 8 is observed. The relative sensitivities obtained with re-
spect to the lower layer thickness (Fig. 7) are larger, at the order of two, than
those calculated with respect to the interface radius (Fig. 8).

Fig. 8. Relative sensitivities of the fracture parameter with respect to the interface
radius RI .

Relative sensitivity results shown in Figs. 6–8 demonstrate usefulness of the
sensitivity analysis in general. In particular, they enable to pinpoint exactly the
importance of a particular composite parameter. In order to show that aspect
in a more detail, the relative sensitivities of the fatigue cycles number were cal-
culated with respect to several parameters and compared. Outcome of these
computations is shown in Table 2 as a function of the normalised delamina-
tion length. Thus, the importance of each design parameter on the fatigue cycle
number can be compared at consecutive delamination lengths. Here, it is only
focused on the sensitivity values obtained at the largest crack length (last line
of Table 2 marked in bold). These sensitivities enable to judge the importance
of each parameter on the fatigue life of the analysed composite. It is shown in
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Table 2 that two parameters associated with the lower component of the com-
posite, i.e. Young’s modulus E2 and the thickness h2, are the most significant
parameters for the fatigue life. In particular, positive value of the relative fa-
tigue life sensitivity gradient, Srel(E2), corresponds to the fact that an increase
in the lower layer Young’s modulus extends considerably the composite fatigue
life. This is directly connected with the fact that by increasing the lower layer
Young’s modulus, E2, the normalised crack tip opening and tangential displace-
ments decrease, as shown in Figs. 9 and 10 for two normalised crack lengths as a
function of the arc length s (s = 0 for a = 0). This in turn, results in a reduction
of stress component values around the crack tip (interestingly without a change
of stress distribution) as shown in Fig. 12 for a single normalised delamination
length, and compared with the reference (unperturbed) stress values in Fig. 11.
Reduction of crack tip displacements and near tip stresses leads to a reduction of
the crack driving force (total energy release rate), as demonstrated later, in Figs.
13 and 14, by negative values of relative sensitivities of the fracture parameter
with respect to the lower layer Young’s modulus, E2. Hence, altogether it leads
to the conclusion that delamination demands more loading cycles to propagate
from ao to af with increasing E2. Thus, an increase in the component stiffness
ratio E2/E1 might retard the fatigue failure of the analysed composite.

Table 2. Relative sensitivity gradients of the fatigue cycles number
(parameter perturbation +1%).

a/ao Srel(E1) Srel(E2) Srel(ν1) Srel(ν2) Srel(h1) Srel(h2) Srel(µ) Srel(RI)

1.167 −2.292 12.957 −1.662 3.016 −3.220 −8.732 0.814 −1.467
1.333 −2.210 13.060 −0.878 3.171 −3.202 −8.119 0.808 −0.638
1.500 −2.204 13.024 −0.620 3.216 −3.228 −8.004 0.918 −0.412
1.667 −2.192 12.993 −0.493 3.266 −3.258 −8.034 1.011 −0.305
1.833 −2.171 12.959 −0.415 3.312 −3.286 −8.144 1.096 −0.247
2.000 −2.139 12.914 −0.366 3.349 −3.313 −8.317 1.173 −0.215
2.167 −2.097 12.860 −0.333 3.372 −3.334 −8.535 1.238 −0.198
2.333 −2.049 12.801 −0.312 3.381 −3.347 −8.767 1.287 −0.191
2.500 −2.006 12.749 −0.300 3.378 −3.352 −8.957 1.316 −0.189
2.667 −1.982 12.721 −0.295 3.372 −3.351 −9.058 1.327 −0.189
2.833 −1.975 12.713 −0.294 3.370 −3.349 −9.082 1.329 −0.189
3.000 −1.974 12.713 −0.294 3.370 −3.349 −9.084 1.329 −0.189
3.167 −1.974 12.713 −0.294 3.370 −3.349 −9.084 1.329 −0.189
3.333 −1.974 12.713 −0.294 3.370 −3.349 −9.084 1.329 −0.189
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Fig. 9. Effects of Young’s moduli variations on delamination tip opening displacements.

Fig. 10. Effects of Young’s moduli variations on delamination tip tangential displacements.

Fig. 11. Near-tip stress distribution for nominal design parameter values [Pa]
(1) normal (2) shear (3) von Mises.
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Fig. 12. Near-crack tip stress distribution (+∆E2 = 10%) [Pa]
(1) normal (2) shear (3) von Mises.

Then, it has been already mentioned that the lower layer thickness, h2, is
the next, after E2, most important composite parameter that affects the com-
posite fatigue life. However, it is not yet fully clear if the high value of the
relative sensitivity is actually because of a large significance of that composite
parameter, or it is rather caused by an increase in a load area. The latter fact
obviously implies larger forces acting on the composite, that increase consid-
erably the crack tip displacement and near tip stresses, and thereby the crack
driving force. This leads finally to a serious reduction of the composite fatigue
life. This issue must be investigated further, to conclude about an actual impor-
tance of h2 on the composite fatigue life. It can be carried out by replacing the
force (stress)-controlled loading conditions by displacement (strain)-controlled
ones, hence avoiding any change in load when perturbing h2. Finally, the least
important composite parameters are the interface radius and the Poisson’s ra-
tio of the lower component, RI and ν1, respectively. The lack of significance of
ν1 and especially RI is caused by the specific boundary conditions considered
in this work. In a more general (complex) case of boundary conditions such as
bending or compression, one might expect a much larger significance of com-
posite curvature. Hence, the next step in application of the sensitivity analysis
to composite fatigue delamination problems should consider other, more general
boundary conditions.

It is believed that the information shown in Table 2 (particularly in the last
line) might help a composite engineer to choose appropriate design directions
to optimise the fatigue fracture performance of the composite. However, at the
time being one should be careful with a direct translation of these results into
design. It is due to the fact that the composite models used here, do not include
other important composite parameters such as those connected with all inelastic
damage micro-phenomena. Nevertheless, a change (enrichment) of the model
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will not change the sensitivity approach presented in this work. It will solely
introduce new design parameters in calculations. Hence, the results should be
more useful with respect to composite design and optimisation.

4.4. Numerical stability of sensitivity analysis results

An important issue of sensitivity computations with the finite difference ap-
proach is the numerical stability of calculated sensitivities. Therefore, this aspect
is briefly discussed herein. In order to analyse it, the sensitivities are calculated
with respect to three different composite parameter increments, as it has been
already mentioned above, i.e. promiles (0.001), percents (0.01) and tenths (0.1).
Most of the sensitivities showed a very good numerical stability, i.e. the sensi-
tivities computed for different parameter increments were nearly the same and
did not show any oscillations (cf. Figs. 6–8). However, there were some cases
in which the sensitivities were affected by parameter increments, as it is shown
e.g. in Fig. 13 for the Young’s modulus of the lower layer, E2. In that case, the
sensitivities obtained for the largest parameter increment (+10%) were different
from those calculated for smaller increments (+0.1 and 1.0%). Thus, the design
parameter change equal to +10% was too large in the problem at hand to obtain
reliable sensitivities. Therefore, the sensitivities were calculated once more for
three increments using the central finite differences. The outcome is shown in
Fig. 14, where the parameter-increment dependence is absent as compared with
Fig. 13. Thus, on the one hand it shows that the dependences are caused by too
large parameter increments, which is a common feature associated with an appli-
cation of the forward finite difference approach. On the other hand, it points out
that if any numerical instabilities arise due to the utilisation of that approach,
then a user might avoid it by switching it to the central finite differences.

Fig. 13. Relative sensitivities of the fracture parameter with respect
to the Young’s modulus E2 – forward finite difference.
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Fig. 14. Relative sensitivities of the fracture parameter with respect
to the Young’s modulus E2 – central finite difference.

In general it was observed that the relative sensitivities of GT and Ni obtained
from the forward difference approach showed a good numerical stability for the
parameter increment (+1%).

4.5. Verification of relative sensitivities

Another important aspect was to verify the accuracy of calculated relative
sensitivities with other existing approaches. Since no closed-form solution re-
lated to the problem considered was found, the numerical probabilistic approach
reported in [24] was taken as a reference case. The reference approach is based
on the Monte–Carlo simulation concept that helps to generate a design parame-
ter spectrum according to a specified statistical distribution. Then, FEM-based
simulations are run for each generated parameter from which the corresponding
fracture parameters are calculated. Then, functions describing relations between
the design and objective parameters (such as crack driving force) are numerically
evaluated, differentiated with respect to a design parameter and normalised to
obtain relative sensitivities.

Herein, the relative sensitivity values of the total energy release rate with
respect to the Young’s modulus of the lower layer, E2, are compared. Results
from both approaches are collected in Table 3 as a function of the normalised de-
lamination length. The sensitivities from the current (finite-difference) approach
were calculated for the parameter increment +1%.

It is shown in Table 3 that results from both approaches are in a very good
agreement – sensitivities obtained from the reference approach are only slightly
higher, especially for larger delamination lengths. This confirms the conclusion
that current sensitivity calculations are correct from the computational point of
view.
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Table 3. Relative sensitivities of the total energy release rate GT .

a/ao
Srel(E2)

Current approach Reference approach

1.0 −1.210 −1.230
1.167 −1.228 −1.226
1.333 −1.211 −1.225
1.5 −1.207 −1.220
1.667 −1.200 −1.214
1.833 −1.190 −1.203
2.0 −1.173 −1.186
2.167 −1.148 −1.160
2.333 −1.110 −1.122
2.5 −1.058 −1.069
2.667 −0.992 −1.003
2.833 −0.923 −0.933
3.0 −0.923 −0.933
3.167 −0.872 −0.933
3.333 −0.872 −0.933

5. Conclusions

A computational approach to sensitivity analysis was proposed in this work
to study composite parameter effects in a fatigue delamination problem of a two-
layer composite. The main conclusions that stem from this work are as follows:

1. The calculated relative sensitivities enabled to point out, both qualitatively
as well as quantitatively, the importance (or lack of importance) of compos-
ite parameters, such as layer Young’s modulus or thickness, on the fatigue
life of a delaminated composite subjected to shear fatigue loads of constant
amplitude. Results of the current investigation revealed an important fact
that the relative sensitivities of the fracture parameter and fatigue cycle
number are not constant but vary during delamination growth.

2. Relative sensitivities determined by the forward finite difference concept
showed a satisfactory numerical stability – i.e. results were generally in-
dependent of the composite parameter increment. In cases where relative
sensitivity results were parameter increment-dependent, the application of
the central finite difference concept improved considerably their numerical
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stability. However, in nearly all cases it was possible to find the appropriate
parameter increment when using the forward finite differences.

3. Relative sensitivity values obtained from the current approach were verified
and found to be in a very good agreement with relative sensitivity results
of a sample-based approach to sensitivity analysis.

4. ANSYS post-processing environment appeared as a very convenient tool
in implementing and executing the sensitivity analysis by solely using its
parametric design language without a direct access to its source code. More
computational details and parts of the implementation can be found in [20].

5. Actually it is not possible to conclude that the current approach can be
applied to carry out the sensitivity analysis of other delamination problems
in composite laminates. Therefore, it would be interesting and necessary to
consider other, more general, boundary conditions such as cyclic bending
or compression. This issue is left for future research.
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