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RESISTANCE OF RC ANNULAR CROSS-SECTIONS WITH OPENINGS
SUBJECTED TO AXIAL FORCE AND BENDING

M. L e c h m a n

Building Research Institute
ul. Filtrowa 1, 00-611 Warszawa, Poland

This paper presents ultimate limit state analysis of the resistance of reinforced concrete
(RC) annular cross-sections with openings, subjected to the axial force and the bending mo-
ment. Based on nonlinear material laws for concrete and reinforcing steel and using the method
of mathematical induction, analytical formulae are derived in the case when the cross-section
is weakened by an arbitrary number of openings located symmetrically with respect to the
bending direction. In this approach, the additional reinforcement at openings is also taken
into account. The results of numerical calculations are presented in the form of interaction
diagrams with the design values of the normalized cross-sectional forces nu and mu for the
sections weakened by openings as well as for the closed ones. This approach has been applied
to investigate the influence of different parameters such as the size and the number of openings,
the reinforcement ratio, the additional reinforcement at the opening, the form of stress-strain
relationships for concrete and the thickness/radius ratio, on the section resistance.

Notations

Es modulus of elasticity of steel,
Fad1 area of the additional reinforcement at the opening specified by α1,
Fad2 area of the additional reinforcement at the opening specified by α2,
MSd design bending moment,
Mu ultimate bending moment,
NSd design axial force,
Nu ultimate axial force,
R outer radius of ring,

ccs coefficient of concrete softening,
csh coefficient of steel hardening,
fck characteristic strength of concrete in compression,
fyk yield stress of steel,

mRd = mu design normalized ultimate bending moment,
nRd = nu design normalized ultimate axial force,

r inner radius of the ring,
rm mean radius of the ring,
rs radius of the circumference on which reinforcing steel is located,

t = R− r thickness of the cross-section,
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α angle describing the location of the neutral axis (α1 ≤ α ≤ α2), rad,
α1 angle describing the location of the first opening, rad,
α2 angle describing the location of the second opening, rad,
m number of openings,

(α1, α2), (α3, α4), ..., (αm−1, αm) couples of angular coordinates determining the locations
of openings, rad,

αb angle determining the depth of the zone of plastified concrete, rad,
αa1 angle determining the depth of the zone of plastified steel in compression, rad,
αa2 angle determining the depth of the zone of plastified steel in tension, rad,

ε strain expressed in %�,
εc strain in concrete, [%�],

εcu ultimate strain in concrete, [%�],
εs strain in steel, [%�],

εsu ultimate strain in steel, [%�],
εsy strain related to the yield stress of steel, [%�],
ε0 the given numerical parameter,
γc partial safety factor for concrete,
γs partial safety factor for steel,
µ the ratio of cross-sectional areas, steel to concrete,

µα1, µα2 the ratios of cross-sectional areas, additional reinforcement located at the open-
ings specified by α1, α2 to concrete,

µαi the ratio of cross-sectional areas, additional reinforcement located at the opening
side specified by αi to concrete,

σc compressive stress in concrete,
σs stress in steel.

1. Introduction

Structures and members with the annular cross-section weakened by openings
subjected to the axial force and bending moment are frequently encountered in
engineering practice (towers, chimneys, lamp posts, columns etc.).

Determination of the resistance of the cross-sections of RC chimneys and
tower structures has been reported in the literature by several authors. The
ultimate load analysis of a shell with a circular cross-section weakened by one
and two openings is presented in the monograph by Pinfold [1]. A similar
approach is also used by Nieser and Engel [2], in DIN 1056 and CICIND
codes [3, 4], assuming the central layout of steel reinforcement in the wall of
tower or chimney structures and ignoring the effect of additional reinforcement
at the sides of openings. The generalized linear section model for analysis of RC
chimneys weakened by openings was proposed by Lechman and Lewiński [5].

When RC cross-sections under consideration are subjected to the given design
axial force NSd and bending moment MSd and a nonlinear behavior of concrete
and steel reinforcement is assumed, the problem is described mathematically
by a set of equations which are nonlinear and difficult to solve. Therefore, a
numerical strategy must be used. For this purpose the modified BFGS method
has been successfully applied by Lechman and Stachurski [6].
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Despite the generality of the papers mentioned, there are no appropriate an-
alytical formulae for determining the resistance of the annular sections weakened
by an arbitrary number of openings and taking into consideration the physical
nonlinearity of concrete and reinforcing steel. Such a task has been undertaken
in the present paper.

2. Derivation of formulae for the section with one or two
diametrically opposite openings

As the first step of the proposed approach, the annular cross-section, de-
scribed by the outer radius – R and the inner radius – r, is assumed to be
weakened by one or two openings. The locations of the openings are determined
by couples of the angular coordinates (0, α1), (α2, π), 0 ≤ α1 ≤ α2 ≤ π. The
reinforcing steel spaced in a general case continuously at l layers can be replaced
by a continuous ring of equivalent area located on the reference circumference
of radius rs (Fig. 1a). The section under consideration is subjected to the axial
force Nu and the bending moment Mu at ultimate limit state. If α1 6= 0 and
α2 = π, it forms the cross-section weakened by a single opening, while α1 = 0
and α2 = π describe the closed annular one.

In the present derivation, the following assumptions have been introduced:
(i) plane cross-sections remain plane,
(ii) the tensile strength of concrete is ignored,
(iii) the reinforcement in both the tension and compression zone is taken into

account,
(iv) the thickness of the section is thin compared with its diameter,
(v) elasto-plastic stress/strain relationships for concrete and steel are used,
(vi) the ultimate strain for concrete is defined as −3.5%� or −2%�, while for

reinforcement as 5%� (tension) and −5%� (compression).
For determining the resistance of cross-sections, the stress-strain relation-

ships for concrete in compression with softening in the plastic range is given by
(Fig. 1b):

(2.1)
σc =

fck

γc

2
ε0

(
1 +

ε

2ε0

)
ε, for − ε0 ≤ ε ≤ 0,

σc = −fck

γc

(
1− ccs

ε + ε0

εcu + ε0

)
, for − 3.5 ≤ ε ≤ −ε0,

where ε0 – the given numerical parameter, fck – characteristic strength of con-
crete in compression, γc – partial safety factor for concrete, ccs = (fcd− fcu)/fcd

– coefficient of concrete softening in the plastic range, fcd – design value of the
compressive strength of concrete, fcu = σc(εcu).
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Fig. 1. a) The cross-section weakened by two openings, b) distribution of strains ε, stresses
in concrete σc and in steel σs across the section.

To determine the resistance of the cross-sections, the stress-strain relations
for reinforcing steel with hardening in the plastic range are assumed as (Fig. 1b):

(2.2)

σs =
fyk

εss
ε, for −εsy ≤ ε ≤ εsy,

σs =
fyk

γs

(
1 + csh

ε− εsy

εsu − εsy

)
, for εsy ≤ ε ≤ 10,

σs = −fyk

γs

(
1− csh

ε + εsy

εsu − εsy

)
, for −10 ≤ ε ≤ −εsy,

εss =
fyk

Es
, εsy =

εss

γs
,
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where fyk – yield stress of steel, Es – modulus of elasticity of steel, γs – partial
safety factor for steel, csh – coefficient of steel hardening in the plastic range
expressed as:

csh =
fsu − fyd

fyd
,

fyd – design value of the yield stress of steel, fsu = σs(εsu).
Let us consider the cross-section under combined compression and bending.

Due to the Bernoulli assumption we obtain:

(2.3)
εc =

cosϕ− cosα

ρR − cosα
ε′ = (cosϕ− cosα)ε′α,

εs =
ρ cosϕ− cosα

ρR − cosα
ε′ = (ρ cosϕ− cosα)ε′α,

where ε′ – the maximum compressive strain in concrete at the point (0, R), [%�],
α – angle describing the location of the neutral axis, rad, ϕ – angular coordinate,

rad, ρ – coefficient, ρ = rs/rm, ρR – coefficient, ρR = R/rm, ε′α =
ε′

ρR − cosα
.

The conditions of the strain conformity for the concrete and the steel in
compression and in tension are expressed, respectively, by

(cos αb − cosα)ε′α = −ε0,(2.4)

(ρ cosαa1 − cosα)ε′α = −εsy,(2.5)

(ρ cosαa2 − cosα)ε′α = εsy,(2.6)

where αb – angle determining the depth of the zone of the plastified concrete, αa1

– angle determining the depth of the zone of the plastified steel in compression,
αa2 – angle determining the depth of the zone of the plastified steel in tension.

The resistance of the cross-section is reached when either the ultimate strain
in concrete εcu or in steel εsu is reached anywhere in that section, i.e. the following
conditions must be satisfied:

(cosα1 − cosα)ε′α = εcu,(2.7)

(ρ cosα2 − cosα)ε′α = εsu.(2.8)

On the basis of a combinatorial approach, eight possible forms of the stress
distribution in the section are to be considered:

1) elastic phase of the concrete and steel,
2) plastic phase of the concrete, elastic phase of the steel,
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3) plastic phase of the concrete and the steel in compression, elastic phase of
the steel in tension,

4) plastic phase of the concrete and the steel in tension, elastic phase of the
steel in compression,

5) elastic phase of the concrete and the steel in compression, plastic phase of
the steel in tension,

6) elastic phase of the concrete and the steel in tension, plastic phase of the
steel in compression steel,

7) elastic phase of the concrete, plastic phase of the steel in compression and
the steel in tension,

8) plastic phase of the concrete and steel.
Let us consider the case 8). The equilibrium equation of the normal forces in the
cross-section weakened by one or two openings at ultimate limit state takes the
following form:

(2.9) 2




αb∫

α1

σpl
c dAc +

α∫

αb

σe
cdAc


 + 2




αa1∫

α1

σpl
s dAs +

αa2∫

αa1

σe
sdAs

+

α2∫

αa2

σpl
s dAs


 + 2Faα1σ

pl
s (α1) + 2Faα2σ

pl
s (α2) + Nu = 0,

where σpl
c – the stress function of concrete in the plastic range given by (2.1)2,

σe
c – the stress function of concrete in the elastic range given by (2.1)1, σpl

s – the
stress function of steel in the plastic range given by (2.2)2, (2.2)3, σe

s – the stress
function of steel in the elastic range given by (2.2)1, dAc – element of the concrete
area, dAs – element of the steel area, Faα1 – area of the additional reinforcement
at the opening specified by α1, Faα2 – area of the additional reinforcement at
the opening specified by α2.

Using the relation dAc + dAs = dA = rmtdϕ, the equilibrium equation of
the sectional bending moments at ultimate limit state with respect to the line
perpendicular to the symmetry axis and crossing it at the centre of the section,
can be written in the form

(2.10) rmt(1− µ)




αb∫

α1

σpl
c rm cosϕdϕ +

α∫

αb

σe
crm cosϕdϕ




+ rmtµ




αa1∫

α1

σpl
s rs cosϕdϕ +

αa2∫

αa1

σe
srs cosϕdϕ +

α2∫

αa2

σpl
s rs cosϕdϕ




+ Faα1σ
pl
s (α1)rs cosα1 + Faα2σ

pl
s (α2)rs cosα2 + Mu = 0.
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Taking into account the relationships (2.1)–(2.3), after integration and rearrange-
ment of (2.9), (2.10) we obtain

α = arc cos
(

ρR(εsu cosα1 − εcu cosα2)
εsu − εcu

)
,(2.11)

ε′ = εcu
ρR − cosα

ρR cosα1 − cosα
,(2.12)

αb =





α1 elastic phase,

arc cos
(

cosα− ε0
1
ε′α

)
plastic phase,(2.13)

αa1 =





α1 elastic phase,

arc cos
[
1
ρ

(
cosα− εsy

1
ε′α

)]
plastic phase,(2.14)

αa2 =





α2 elastic phase,

arc cos
[
1
ρ

(
cosα + εsy

1
ε′α

)]
plastic phase,(2.15)

(2.16) nu = − 1
π

{
−1− µ

γc
[X7(αb) +

ccs

εcu + ε0
[ε′αX4(α, αb) + ε0X7(αb)]

+
1− µ

γc
ε′α

2
ε0

[
X1(α, αb) +

1
2ε0

ε′αX2(α, αb)
]

+ µ
fyk

fck

{
− 1

γs
[X8(αa1)

+
csh

εsu − εsy
[ε′αX5(α, αa1)− εsyX8(αa1)] +

1
εss

ε′αX3(α, αa1, αa2)

+
{

1
γs

[X9(αa2) +
csh

εsu − εsy
[ε′αX6(α, αa2)− εsyX9(αa2)]

}

+
fyk

fck
µα1

{
−δk1

1
γs

[
1− csh

εsu − εsy
[ε′α(ρ cosα1 − cosα) + εsy]

]

+ δk1+1
ε′α
εss

(ρ cosα1 − cosα)
}

+
fyk

fck
µα2

{
δk2

1
γs

[
1 +

csh

εsu − εsy
[ε′α(ρ cosα2 − cosα)− εsy]

]

+ δk2+1
ε′α
εss

(ρ cosα2 − cosα)
}}

.



50 M. LECHMAN

(2.17) mu = − 1
π

{
−0.5

1− µ

γc

[
Y7(αb) +

ccs

εcu + ε0
(ε′αY4(α, αb) + ε0Y7(αb))

]

+ 0.5
1− µ

γc
ε′α

2
ε0

[
Y1(α, αb) +

1
2ε0

ε′αY2(α, αb)
]

+ 0.5µ
fyk

fck

[
− 1

γs
ρ

[
Y8(αa1)

+
csh

εsu − εsy
(ε′αY5(α, αa1)− εsyY8(αb))

]
+

1
εss

ε′αY3(αa1, αa2)

+
1
γs

ρ

[
Y9(αa2)− sinαa2 +

csh

εsu − εsy
(ε′αY6(α, αa2)− εsyY9(αa2))

]]

+
fyk

fck
ρµα1

{
−δk1

1
γs

[
1− csh

εsu − εsy
[ε′α(ρ cosα1 − cosα) + εsy]

]
cosα1

+ δk1+1
ε′α
εss

(ρ cosα1 − cosα) cos α1

}

+
fyk

fck
ρµα2

{
δk2

1
γs

[
1 +

csh

εsu − εsy
[ε′α(ρ cosα2 − cosα)− εsy]

]
cosα2

+ δk2+1
ε′α
εss

(ρ cosα2 − cosα) cosα2

}}
,

where:

(2.18) nu =
Nu

2πrmtfck

denotes the normalized ultimate normal force,

(2.19) mu =
Mu

4πr2
mtfck

denotes the normalized ultimate bending moment, µ = dAs/dA – the ratio of

areas, steel to concrete, µα1 =
Faα1

rmt
, µα2 =

Faα2

rmt
– the ratios of areas, additional

reinforcement located at the openings specified by α1, α2 to concrete, t - thickness
of the cross-section t = R− r, dϕ – element of the angle measured from the axis
in the compressive zone.

δk =
1
2
((−1)k + 1), k = 1, 2, 3;

k1 = 1, 2; k2 = 2, 3.
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The functions X1–X9 and Y1–Y9 are defined by the following formulae:

(2.20)

X1(α, αb) = sinα− sinαb − cosα(α− αb),

X2(α, αb) = (0.5 + cos2 α)(α− αb) + 0.25(sin 2α− sin 2αb)

− 2 cos α(sinα− sinαb),

X3(αa1, αa2) = ρ(sinαa2 − sinαa1)− cosα(αa2 − αa1),

X4(α, αb) = sinαb − sinα1 − cosα(αb − α1),

X5(α, αa1) = ρ(sinαa1 − sinα1)− cosα(αa1 − α1),

X6(α, αa2) = ρ(sinα2 − sinαa2)− cosα(α2 − αa2),

X7(αb) = αb − α1,

X8(αa1) = αa1 − α1,

X9(αa2) = α2 − αa2.

(2.21)

Y1(α, αb) = 0.5(α− αb) + 0.25(sin 2α− sin 2αb)

− cosα(sinα− sinαb),

Y2(α, αb) = (1 + cos2 α)(sinα− sinαb)− 1
3
(sin3 α− sin3 αb)

− cosα[α− αb + 0.5(sin 2α− sin 2αb)],

Y3(αa1, αa2) = ρ{ρ[0.5(αa2 − αa1) + 0.25(sin 2αa2 − sin 2αa1)]

− cosα(sinαa2 − sinαa1)},
Y4(α, αb) = 0.5(αb − α1) + 0.25(sin 2αb − sin 2α1)

− cosα(sinαb − sinα1),

Y5(α, αa1) = ρ[0.5(αa1 − α1) + 0.25(sin 2αa1 − sin 2α1)]

− cosα(sinαa1 − sinα1),

Y6(α, αa2) = ρ[0.5(α2 − αa2) + 0.25(sin 2α2 − sin 2αa2)]

− cosα(sinα2 − sinαa2),

Y7(αb) = sinαb − sinα1,

Y8(αa1) = sinαa1 − sinα1,

Y9(αa2) = sinα2 − sinαa2.

In a similar way one can analyze the section wholly being in compression.
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3. Generalization of the obtained formulae for the section
with m openings

The presented model can be generalized for the cross-section weakened by
more than two openings. Let us consider the annular cross-section weakened by
m openings situated symmetrically with respect to the bending direction. By
this assumption, the locations of the openings are determined by couples of the
angular coordinates (α1, α2), (α3, α4), . . . , (αm−1, αm), 0 ≤ α1 ≤ α2 ≤ ... ≤
αm−1,≤ αm ≤ π (Fig. 2). Using the principle of mathematical induction one can
obtain a solution that takes a similar form as (2.11)–(2.17). It covers all locations
of the neutral axis and takes account of possible plastic ranges of concrete and
reinforcing steels. The functions X1–X9 and Y1–Y9 are given in this case by:

(3.1)

X1(α, αb) =
k∑

l+1

(−1)i−1 sinαi − δl sinαb + δk sinα

− cosα

(
k∑

l+1

(−1)i−1αi − δlαb + δkα

)
,

X2(α, αb) = (0.5 + cos2 α)

(
k∑

l+1

(−1)i−1αi − δlαb + δkα

)

+ 0.25

(
k∑

l+1

(−1)i−1 sin 2αi + δl sin 2αb + δk sin 2α

)

− 2 cos α

(
k∑

l+1

(−1)i−1 sinαi − δl sinαb + δk sinα

)
,

X3(α, αa1, αa2) = ρ

(
k2∑

k1+1

(−1)i−1 sinαi − δk1 sinαa1 + δk2 sinαa2

)

− cosα

(
k2∑

k1+1

(−1)i−1αi − δk1αa1 + δk2αa2

)
,

X4(α, αb) =
l∑

l=1

(−1)i−1 sinαi + δl sinαb

− cosα

(
l∑

i=1

(−1)i−1αi + δlαb

)
,
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(3.1)
[cont.]

X5(α, αa1) = ρ

(
k1∑

i=1

(−1)i−1 sinαi + δk1 sinαa1

)

− cosα

(
k1∑

i=1

(−1)i−1αi + δk1αa1

)
,

X6(α, αa2) = ρ

(
m∑

k2+1

(−1)i−1 sinαi + δk2 sinαa2

)

− cosα

(
m∑

k2+1

(−1)i−1αi + δk2αa2

)
,

X7(αb) =
l∑

i=1

(−1)i−1αi + δlαb,

X8(αa1) =
k1∑

i=1

(−1)i−1αi + δk1αa1,

X9(αa2) =
m∑

k2+1

(−1)i−1αi − δk2αa2 + π.

(3.2)

Y1(α, αb) = 0.5

(
k∑

l+1

(−1)i−1αi − δlαb + δkα

)

+ 0.25

(
k∑

l+1

(−1)i−1 sin 2αi − δl sin 2αb + δk sin 2α

)

− cosα

(
k∑

l+1

(−1)i−1 sinαi − δl sinαb + δk sinα

)
,

Y2(α, αb) = (1 + cos2 α)

(
k∑

l+1

(−1)i−1 sinαi − δl sinαb + δk sinα

)

− 1
3

(
k∑

l+1

(−1)i−1sin3αi − δlsin3αb + δksin3α

)

− cosα

[
k∑

l+1

(−1)i−1αi − δlαb + δkα

+ 0.5

(
k∑

l+1

(−1)i−1sin 2αi − δlsin 2αb + δksin 2α

)]
,
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(3.2)
[cont.]

Y3(α, αa1, αa2) = ρ

{
ρ

[
0.5

(
k2∑

k1+1

(−1)i−1αi − δk1αa1 + δk2αa2

)

+ 0.25

(
k2∑

k1+1

(−1)i−1 sin 2αi − δk1 sin 2αa1 + δk2 sin 2αa2

)]

− cosα

(
k2∑

k1+1

(−1)i−1 sinαi − δk1 sinαa1 + δk2 sinαa2

)}
,

Y4(α, αb) = 0.5

(
l∑

i=1

(−1)i−1αi + δlαb

)

+ 0.25

(
l∑

i=1

(−1)i−1 sin 2αi + δl sin 2αb

)

− cosα

(
l∑

i=1

(−1)i−1 sinαi + δl sinαb

)
,

Y5(α, αa1) = ρ

[
0.5

(
k1∑

i=1

(−1)i−1αi + δk1αa1

)

+

(
0.25

k1∑

i=1

(−1)i−1 sin 2αi + δk1 sin 2αa1

)]

− cosα

(
k1∑

i=1

(−1)i−1 sinαi + δk1 sinαa1

)
,

Y6(α, αa2) = ρ

[
0.5

(
m∑

k2+1

(−1)i−1αi + δk2αa2

)

+ 0.25

(
m∑

k2+1

(−1)i−1 sin 2αi + δk2 sin 2αa2

)]

− cosα

(
m∑

k2+1

(−1)i−1 sinαi + δk2 sinαa2

)
,

Y7(αb) =
l∑

i=1

(−1)i−1 sinαi + δl sinαb,

Y8(αa1) =
k1∑

i=1

(−1)i−1 sinαi + δk1 sinαa1,

Y9(αa2) =
m∑

k2+1

(−1)i−1 sinαi + δk2 sinαa2.
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k = 0, 1, ..., m – the index of the interval satisfying the condition α ∈ 〈αk, αk+1〉,
where α is the angle describing the location of the neutral axis of the section,
l denotes the index of the interval satisfying the condition αb ∈ 〈αl, αl+1〉,
l = 0, 1, ..., k, k1 – the index of the interval satisfying the condition αα1 ∈
〈αk1, αk1+1〉, k1 = 0, ..., k, k2 – the index of the interval satisfying the condition
αa2 ∈ 〈αk2, αk2+1〉, k2 = k + 1, ..., m.

In the above formulae it is assumed that if m1 > m2 then
m2∑
m1

( ) = 0.

Fig. 2. The cross-section weakened by m openings located symmetrically with respect
to the bending direction.

The effects of the additional reinforcements at the openings are determined
by the following conditions:
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– with respect to nu:

(3.3)
fyk

fck

{
− 1

γs

k1∑

i=1

µai

[
1− csh

εsu − εsy
[ε′α(ρ cosαi − cosα) + εsy]

]
+

+
ε′α
εss

k2∑

i=k1+1

µai(ρ cosαi − cosα)

+
1
γs

m∑

i=k2+1

µai

[
1 +

csh

εsu − εsy
[ε′α(ρ cosαi − cosα)− εsy]

]}

– with respect to mu:

(3.4) 0.5
fyk

fck
ρ

{
− 1

γs

k1∑

i=1

µai

[
1− csh

εsu − εsy
[ε′α(ρ cosαi − cosα) + εsy]

]
cosαi

+
ε′α
εss

k2∑

i=k1+1

µai(ρ cosαi− cosα) cos αi

+
1
γs

m∑

i=k2+1

µai

[
1 +

csh

εsu − εsy
[ε′α(ρ cosαi − cosα)− εsy]

]
cosαi

}
.

To prove validity of the formulae (3.1)–(3.2) in a general case, the mathematical
induction is employed. Substituting m = 4, k = 2, l = 2 in the formulae (3.1)
and (3.2), the relationships given by (2.20)–(2.21) for the section weakened by
two openings are obtained (Fig. 1a):

X1(α, αb) =
2∑

3

(−1)i−1 sinαi − δ2 sinαb + δ2 sinα

− cosα

(
2∑

3

(−1)i−1αi − δ2αb + δ2α

)
= − sinαb + sin α− cosα(−αb + α),

Y1(α, αb) = 0.5

(
2∑

3

(−1)i−1αi − δ2αb + δ2α

)

+ 0.25

(
2∑

3

(−1)i−1 sin 2αi − δ2 sin 2αb + δ2 sin 2α

)

− cosα

(
2∑

3

(−1)i−1 sinαi − δ2 sinαb + δ2 sinα

)

= 0.5(−αb + α) + 0.25(− sin 2αb + sin 2α)− cosα(− sinαb + sin α),

due to
2∑
3

( ) = 0.
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In a similar way the functions X2–X9 and Y2–Y9 given by (2.20) and (2.21)
can be obtained.

Let us in turn assume validity of the formulae (3.1)–(3.2) for the section
weakened by m openings, k = 1, 2, ..., m, and let us consider the section weakened
by two additional, symmetrically situated openings, the locations of which are
determined by a couple of angular coordinates (αm+1, αm+2), 0 ≤ α1 ≤ α2 ≤
... ≤ αm ≤ αm+1 ≤ αm+2 ≤ π (Fig. 2).

The task leads to two additional cases of location of the neutral axis α to be
considered: αm+1 ≤ α ≤ αm+2 or αm+2 ≤ α ≤ π .

Integrating the equilibrium equation (2.9) in the first case, the function X1 (α,
αb) takes the following form (k = m + 1):

X1(α, αb) =
m−1∑

l+1

(−1)i−1 sinαi − δl sinαb + sinαm+1 − sinαm

− cosα

(
m−1∑

l+1

(−1)i−1αi − δlαb + αm+1 − αm

)

=
m+1∑

l+1

(−1)i−1 sinαi−δl sinαb−cosα

(
m+1∑

l+1

(−1)i−1αi − δlαb

)
, (δm+1 = 0).

For the case αm+2 ≤ α ≤ π (k = m + 1):

X1(α, αb) =
m+1∑

l+1

(−1)i−1 sinαi − δl sinαb + sinα− sinαm+2

− cosα

(
m+1∑

l+1

(−1)i−1αi − δlαb + α− αm+2

)

=
m+2∑

l+1

(−1)i−1 sinαi − δl sinαb + δm+2 sinα

− cosα

(
m+2∑

l+1

(−1)i−1αi − δlαb + δm+2α

)
, (δm+2 = 1).

The remaining functions X2–X9 and Y1–Y9 can be checked in a similar way.
Thus, the general formulae (3.1) and (3.2) are proved.

4. Numerical examples

The presented approach enables the determination of the resistance of the
sections under consideration. Using the derived formulae (2.11)–(2.17) and
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(3.1)–(3.4), the interaction curves with the design values of the normalized, cross-
sectional forces nu and mu have been obtained for the section weakened by two
or four openings (Fig. 3, Fig. 4). Each curve refers to the corresponding value
of reinforcement ratio µfyk/fck. The maximum compressive strain in concrete is
calculated at the extreme fibre in the compression zone of the section. The two
numbers εc/εs at each indication point are concrete strain and steel strain in %�.
The points located on the nu axis are related to pure compression and on the mu

axis – to pure bending. The points denoted by εc/0 can be interpreted as tran-
sition from the state εc/(εs < 0) described as whole compression (uncracked) to
the one εc/(εs > 0) characterized by the occurrence of the tensile strains which
cause the crack formation in concrete (cracked).

Fig. 3. Interaction diagram with the design values of the normalized cross-sectional forces
nu and mu for the section weakened by two openings: fyk = 220 MPa; γc = 1.5; γs = 1.15,

ε0 = 2.0, ccs = csh = 0.

The effect of the additional lumped reinforcement at an opening was exam-
ined under the assumption that the cross-sectional area of the additional steel
bars at the sides of the opening is equal to that which would have passed through
it. The comparison presented in Fig. 5. indicates that the section resistance de-
termined by the values of nu, mu increases due to the additional reinforcement
at a single opening by more than 10%, depending on the opening size and the
ultimate values εcu and εsu.
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Fig. 4. Interaction diagram with the design values of the normalized cross-sectional forces
nu and mu for the section weakened by four openings: fyk = 500 MPa; γc = 1.5; γs = 1.15,

ε0 = 2.0, ccs = csh = 0.

Fig. 5. The effect of the additional reinforcement at the opening on the resistance of the
section with a single opening: curves a, b – α = 44◦, Faα1 = 21.85 cm2 (a), Faα1 = 0 (b);
curves c, d – α = 66◦, Faα1 = 32.78 cm2 (c), Faα1 = 0 (d); fyk = 410 MPa; γc = 1.5;

γs = 1.15; µ = 1%, ε0 = 2.0, ccs = csh = 0.
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Fig. 6. The effect of a single opening of the size of 44◦ on the section resistance: curves a, b
– the closed ring section; curves c, d – the ring section weakened by single opening;

fyk = 410 MPa; γc = 1.5; γs = 1.15; µ = 1%, ε0 = 2.0, ccs = csh = 0.

Fig. 7. Comparison of the section resistance determined by stress-strain relationship for the
concrete given by (2.1) (b) with that based on the parabolic-rectagular one (a);

fyk = 410 MPa; fck = 20 MPa; γc = 1.5; γs = 1.15; µ = 0.5%, ε0 = 2.0, ccs = 0.15, csh = 0.
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Fig. 8. Resistance of the annular cross-section as a function of the t/R ratio; fyk = 410
MPa; fck = 20 MPa; γc = 1.5; γs = 1.15; µ = 0.5%, ε0 = 2.0, ccs = csh = 0.
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As the next problem, the effect of openings on the section resistance has been
determined. The curves presented in Fig. 6 indicate that a single opening of the
size of 44◦ results in reduction in the section resistance by 30–40% with respect
to the normal force nu and the bending moment mu.

The comparison of the section resistance determined by the stress-strain re-
lationship given by (2.1) with that based on the parabolic-rectagular one is pre-
sented in Fig. 7. It shows that the concrete softening in the plastic range results
in decreasing the section resistance by 9–11% with respect to nu and 8–19% with
respect to mu.

In Fig. 8 the values of nu and mu are shown as functions of the t/R ratio for
different ultimate values εcu and εsu. The increasing value of t/R ratio results
in lower section resistance. It is reduced in the considered range 〈0.05; 0.25〉 by
up to 14% with respect to nu and by up to 7% with respect to mu.

Table 1. Comparison of the calculated values with those specified in the DIN
1056 code; fyk = 420 MPa, γc = 1.5, γc = 1.25, α – opening size, RD – relative

difference.

Type
of Section

α
[◦]

µ
fyk

fck
εc/εs

nu mu

DIN Proposed
model RD [%] DIN Proposed

model RD [%]

Closed 0.2 −2/2 0.260 0.244 6.6 0.14 0.138 1.7

with 1 opening 22 0.2 −2/1 0.305 0.293 4.1 0.11 0.108 2.1

with 1 opening 33 0.3 −2/1 0.30 0.286 5.1 0.111 0.109 1.4

with 2 openings 22 0.15 −2/1 0.30 0.287 4.6 0.10 0.098 1.7

with 2 openings 44 0.1 −2/4 0.100 0.105 4.7 0.059 0.0589 0.1

The calculated design values of the normalized, cross-sectional forces nu and
mu for the sections weakened by one and two openings have been compared
with those given according to DIN 1056 [2, 3] (Table 1). The resulting differ-
ences do not exceed 7%. In the author’s opinion, they result from the differences
in the models used and partly from the inaccuracies of reading the DIN dia-
grams.

5. Conclusions

Based on this study, the following conclusions can be drawn:
1. Using combinatorial approach and the method of mathematical induction,

general analytical formulae have been derived for determining the resis-
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tance and elasto-plastic analysis of RC annular cross-sections, weakened
by an arbitrary number of openings located symmetrically with respect to
the bending direction.

2. The obtained solutions are presented in the form of interaction diagrams
with the design values of the normalized cross-sectional forces nu and mu

that can be easily used in structural design.

3. The proposed section model seems to have a wider application field than
the previous ones due to the assumptions of non-central layout of rein-
forcement, additional steel bars at openings and wall edge strains.

4. The resistance of the section increases due to the additional reinforcement
at the opening by more than 10%, depending on the opening size and the
ultimate values εcu, εsu.

5. A single opening may result in reduction in the section resistance by
30–40% with respect to the normal force nu and the bending moment
mu.

6. Concrete softening in the plastic range as well as increasing value of the
t/R ratio result in a lower section resistance.

7. The proposed model works well in most cases encountered in engineering
practice.

8. The range of validity of the obtained solutions is limited to such number,
sizes and locations of openings which assure that plane sections remain
plane.

9. If the assumption that plane sections remain plane is not satisfied, the
method may still be used provided that the openings are treated as en-
larged, as described in the CICIND 2001 Code [4] and the Eurocode
EN 13084-2:2006 [7].

10. The model serves for dimensioning the cross-sections and enables to design
strenghtening of RC structures by means of the external reinforcement.
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