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This year in June, the Swiss Association of Material Testing for Technology
(Schweiz. Verband für die Materialprüfungen der Technik) arranged two inter-
esting lectures about material effort and buckling. Even the sole course of the
discussion speaks for topical interest of both problems; it is enough to say that it
proceeded for over five hours in a tightly filled Auditorium I of the Zurich Poly-
technic (Eidgenössische Technische Hochschule). The chairman was Prof. Dr.
Eng. h.c. M. Roš, the director of the Confederate Material Testing Laboratory
(Eidgenössische Materialprüfungsanstalt – EMPA).

Personally, I was more interested in the first lecture “Theoretical foundations
of the investigations carried out at EMPA to elucidate the question of risk of
fracture” (Die theoretische Grundlagen zu den Versuchen der EMPA zur Klärung
der Frage der Bruchgefahr), delivered by a scientist associated with the said lab-
oratory, Eng. A. Eichinger. We can find the content of the lecture in the Chapters
I and IV, published respectively in EMPA Bericht : No. 28 from 1928 and No 34.
from 1929. The whole content can be summarized in the following way. Critical
material effort of a large number of plastic metals obeys quantitatively the Huber-
von Mises-Hencky hypothesis. The behaviour of all other materials is relatively
best explained, even though not precisely, by Mohr’s hypothesis. The idea inherent
in the Huber-Hencky theory had until now a hypothetical character; only EMPA
has managed – but still with the conservation of Mohr’s main idea – to conduct
a clear (plausible), convincing and exact proof of rightness of the hypothesis. As
a result, the theory of constant critical energy of distortion is nothing else but
a generalization of Mohr’s concept of an envelope.

It cannot be denied that the four-year-long series of fine experiments on elu-
cidating the enigma of material effort, conducted with great expenditure of work
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and money, has a considerable significance. However, it cannot be denied also
that the interpretation of the obtained results, used by EMPA, leaves much to
be desired. The idea inherent in the Mohr theory is outdated and what even
worse – erroneous; there exists a general hypothesis which in the right way and
with satisfactory exactness comprises the results of all, without exception, ex-
periments done by the Laboratories in Zürich and Göttingen as well as by many
other groups interested in the discussed problem. Similarly, the theoretical ef-
forts of the researches in EMPA went the wrong way. The pride of EMPA, the
meticulous conversion of the Huber-Hencky theory to the area of Mohr’s con-
cept, underlined by Roš and Eichinger on nearly every page of the said bulletin,
contains a series of errors in the principal matter.

In reply to Eng. Eichinger’s lecture I addressed the meeting and in an over
one-hour-long speech I tried to explain my view on this question. In the speech
I kept, above all, to the outline marked by the title of the preceding speaker’s
lecture. In the first place then, I explained the theoretical side of the hypotheses of
material effort, leaving the experimental aspect of the matter in the background.
Referring to the present state of affairs, I limited myself, of necessity, to discuss
problems of local and static material effort only.

Foreign countries do not know most of the critical arguments known in
Poland, as I had learned on the occasion of delivering a similar lecture in Göt-
tingen. The hypotheses of material effort are treated there – to a certain degree
even rightly – only as hypotheses; all novelties in this field, are often studied
in laboratories straightaway, without prior insight into elementary theoretical
details. Owing to this fact, every couple of years there arises the need for a new
general hypothesis, since the old one fails. In such state of affairs only the cal-
culus of probability can tell, by examining all the existing typical groupings of
components, how many new and useless theories we will be seeing.

Coming back to the said lecture, I have to admit with satisfaction that it
met with a great interest, which reflected at least in Professor Roš’s request for
a written copy of it; surely, a relevant article will soon appear in German in print,
edited by EMPA1). Before it happens though, it will be good to acquaint Polish
readers with this topical question. The present article extends the mentioned
speech by 25%.

Questions of applied mechanics seldom have such a rich history to their credit
as the theories of material effort do2). The question started in Galileo3) and
Leibniz4) times, it outlived Coulomb5) and Navier6) as well as de Saint

Venant7) and Rankine8), Clebsch9) and Beltrami10), and went through the
hands of many later, distinguished scholars and in the present day – the time
of competition between reliability and economics – it is, next to the problem of
buckling, the most topical scientific issue in the theory of elasticity as well as
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in the very popular plasticity and, finally, in the strength of materials. Rarely
can one meet with so many different views and inconsistencies as in this field.
The hypotheses of material effort were first transferred from their birthplace –
the domain of stress – to the ground of strain theories wherefrom, after not very
good results, they were moved to their last resort – the energy-based approach,
in the state of which they have been remaining till the present day; however,
their mathematical form does not guarantee any general reliable theory and
clearly does not satisfy the needs and interest of practice. But even though, such
divergence of views has never before produced so much benefit as in this field.
A thorough review of the existing material allows one to criticize it, to judge its
bad and good parts, reject the first and use the latter; in consequence, it leads
to a general hypothesis which has a very good chance of success. For a better
understanding of its sense and, in case of need, quality, I will give at first a brief
list of parameters of calculation of the discussed matter and also a critical draft
of the existing hypotheses.

The material effort of a certain point of a body is a physical state closely
related to the state of stress of this point, or its strain. The value of the material
effort is described, irrespectively of the choice of a coordinate system, by six
components of the state of strain εx, εy, εz, 1

2γx, 1
2γy, 1

2γz or equivalently –
by six components of the state of stress11) σx, σy, σz, τx, τy, τz. The effects of
material effort, especially the manner of passing through the characteristic limits
(the proportional limit, the limit of elasticity, the yield point and the ultimate
strength), the pace of passing from one limit to the next and changes of behaviour
in-between, depend on individual properties of the body. Material efforts of two
points subjected to two different states of strain or stress are equal when their
physical effects are equal; the function

(1) f

(

εx, εy, εz,
1

2
γx,

1

2
γy,

1

2
γz

)

= a

or equivalently

(2) g (σx, σy, σz, τx, τy, τz) = b,

expresses mathematically the consistency of the effects.
We assume that the sets of critical components (as we are going to call them

hereafter), which cause equal material effort, change in a continuous manner;
we demand the same from the above equations. It is basically guaranteed by
the continuity of the material considered; in case of its lack, even the simplest
considerations fail in the area of strain as well as of stress.

The highlighted above independence of the material effort of a certain point
upon the chosen frame of reference at this point, allows one to simplify the
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functions f and g. The mechanics of continuum allows, to one’s considerable
advantage, replace a set of six arbitrary components by the three principal ones.
Their values ε1, ε2, ε3 or σ1, σ2, σ3 result from the cubic equation:

(3) ε3 − 3π1ε
2 + 3

(

π2
1 − 1

2
π2

2

)

ε− π3
3 = 0

or accordingly

(4) σ3 − 3ω1σ
2 + 3

(

ω2
1 − 1

2
ω2

2

)

σ − ω3
3 = 0,

where the homogeneous expressions

(5)

π1 =
1

3
(εx + εy + εz) ,

π2
2 =

1

9

[

(εy − εz)
2 + (εz − εx)2 + (εx − εy)

2 +
3

2

(

γ2
x + γ2

y + γ2
z

)

]

,

π3
3 = εxεyεz +

1

4
γxγyγz −

1

4

(

εxγ
2
x + εyγ

2
y + εzγ

2
z

)

,

or accordingly

(6)

ω1 =
1

3
(σx + σy + σz) ,

ω2
2 =

1

9

[

(σy − σz)
2 + (σz − σx)2 + (σx − σy)

2 +
3

2

(

τ2
x + τ2

y + τ2
z

)

]

,

ω3
3 = σxσyσz +

1

2
τxτyτz −

(

σxτ
2
x + σyτ

2
y + σzτ

2
z

)

are evidently independent of the choice of the six groups of components. They
are also mutually independent invariants of the state of stress or strain. The
simplest way to calculate their values is to reject the shear (tangent) components
and replace the normal components with the principal ones.

If we know the principal components, we can easily define the components
ε, 1

2γ or σ, τ , for the directions φ, χ, ψ referred to the orthogonal coordinate
system (ε1, ε2, ε3) or (σ1, σ2, σ3), by the formulae:

(7)

ε = ε1 cos2 φ+ ε2 cos2 χ+ ε3 cos2 ψ,
(

1

2
γ

)2

= (ε2 − ε3)
2 cos2 χ cos2 ψ + (ε3 − ε1)

2 cos2 ψ cos2 φ

+ (ε1 − ε2)
2 cos2 φ cos2 χ
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or

(8)

σ = σ1 cos2 φ+ σ2 cos2 χ+ σ3 cos2 ψ,

τ2 = (σ2 − σ3)
2 cos2 χ cos2 ψ + (σ3 − σ1)

2 cos2 ψ cos2 φ

+ (σ1 − σ2)
2 cos2 φ cos2 χ .

There is only one condition demanded for the existence of these formu-
lae – the material continuity. The orientations φ = ψ = π

4 , χ = π
2 , and

φ = χ = ψ = arccos 1√
3

are worthy of consideration. We obtain successively

(9)

ε = εII =
ε1 + ε3

2
,

1

2
γ =

1

2
γII =

ε1 − ε3
2

,

or

(10)
σ = σII =

σ1 + σ3

2
,

τ = τII =
σ1 − σ3

2
,

for them; moreover:

(11)

ε =
1

3
(ε1 + ε2 + ε3) = π1,

1

2
γ =

1

3

√

(ε2 − ε3)
2 + (ε3 − ε1)

2 + (ε1 − ε2)
2 = π2,

or

(12)

σ =
1

3
(σ1 + σ2 + σ3) = ω1,

τ =
1

3

√

(σ2 − σ3)
2 + (σ3 − σ1)

2 + (σ1 − σ2)
2 = ω2.

For arbitrary directions the formulae for ε, 1
2γ or σ, τ can be represented

in a very fair, developed by Mohr12) and well-known graphical form of circles
for strains and stresses. A system of three circles for strains is homothetic to
a system of three circles for stresses; it occurs not only in elastic regions but also
in plastic ones.

The following facts deserve notice: the sum of circumferences of three prin-
cipal circles, on the assumption that ε1 > ε2 > ε3 or σ1 > σ2 > σ3, is equal
to

(13) Uε = 2π (ε1 − ε3) = 2πγII or Uσ = 2π (σ1 − σ3) = 2πτII .



274 W. BURZYŃSKI

Similarly, the total area of these circles is equal to

(14)

Fε =
π

4

[

(ε2 − ε3)
2 + (ε3 − ε1)

2 + (ε1 − ε2)
2
]

=
9π

4
π2

2,

or

Fσ =
π

4

[

(σ2 − σ3)
2 + (σ3 − σ1)

2 + (σ1 − σ2)
2
]

=
9π

4
ω2

2.

When the principal components are used, the critical material effort is defined
by the functions

(15) f (ε1, ε2, ε3) = a

or

(16) g (σ1, σ2, σ3) = b.

The functions f and g in the earlier introduced, general forms as well as in the
above particular ones are mutually dependent, since there exist close correlations
between the components of strain and the components of stress.

Nowadays we hear more and more often that the study of material effort has
to be necessarily based on investigation of the critical values of strain as well as
stress; this opinion is quite right; however, only from the experimental point of
view, since a properly constructed hypothesis serves its turn equally well on the
ground of strain as on the ground of stress. In the first case, function f plays the
role of the third equation, which in a correlation with an a priori assumed double
proportion ε1 : ε2 : ε3 allows one to calculate the critical values ε1, ε2, ε3. On
the other hand, the function g plays equivalently the unique role for a sequential
ratio σ1 : σ2 : σ3. On this occasion we have additionally defined a mathemat-
ical role of hypotheses of material effort: they are supposed to enable one to
calculate correctly the limit (allowable, critical) values of components for their
assumed ratio. If only a so-called inhomogeneity of matter could be defined pre-
cisely each time, the inhomogeneity would not constitute much difficulty in the
interpretation of experimental results and in additional correction of the theories
of material effort. However, this is not true in the real terms; facing this fact we
have to assume that technically important materials are perfectly homogenous
and that the hypotheses of material effort are developed for such materials. It
partly explains the deviations between experiment and theory. The lack of uni-
formity of a strain state, or a state of stress, during laboratory tests, becomes
an equally important factor; to obtain uniformity is practically impossible.

In this way, the interpretation of the experimental results presents immense
difficulties for the theory; hence, we are being forced to mingle two notions:
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the total and the local material effort. All theoretical calculations are based on
the material effort of a point (e.g. an outer fibre of a beam in the intersection
where a maximum bending moment occurs), while all the experimental data
come from the material effort of a certain volume of continuum. This is the
next cause of the deviations between the theory and the experiments. However,
the most important factor is unquestionably the isotropy – or the quasi-isotropy
(in the meaning established by Voigt13)) – of materials. We are compelled to
decide against a great number of all the various types of anisotropy (defined by
21 elastic constants in a general case; however, still in a quite narrow range).
We assume, of necessity, that the investigated materials are isotropic; in a large
number of cases we cannot guarantee the latter or determine the corresponding
deviations in a precise manner (vibrating of concrete, rolling of steel, internal
stresses – to some extent, repeated loading and so on).

The isotropy is expressed in a particularly simple, though highly restricted
in its application case: the linear Hooke’s law:

(17)
σx,y,z = 2G

(

εx,y,z +
µe

1 − 2µ

)

,

τx,y,z = Gγx,y,z

or

(18)
εx,y,z =

1

E
[(1 + µ)σx,y,z − µs] ,

γx,y,z =
1

G
τx,y,z,

where E, G, µ are commonly known elastic constants; additionally: e = 3π1,
s = 3ω1. The usage of the principal components eliminates the shear ones; for
the normal components the indices 1, 2, 3 should be used instead of the x, y, z.

The relation between the components of both states has a secondary charac-
ter; the energy of strain, or elasticity, of an assumed unit of volume

(19) Φ = Φv + Φf

has the primary significance in this aspect, though still with the identical re-
strictions. The first term Φv stands for the energy due to the change of volume,
the other term Φf – for the energy due to the change of shape; they are shortly
expressed by:

(20)

Φv =
3

2

E

1 − 2µ
π2

1 =
3

2

1 − 2µ

E
ω2

1,

Φf = 3Gπ2
2 =

3

4G
ω2

2.
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Here, the components of one state are partial derivatives of the energy Φ
with respect to the components of the other state. The energy Φ expressed in
such way has an approximate character, since it consists of the first terms of
a general expansion in power series. Basing on the Stickelberg theorem on the
structure of an rational integer function, which is independent of the choice of
a reference system, we can easily give a general expression for the energy Φ. This
is, in general, a series formed from the terms: π1, π2

1, π
2
2; π

3
1, π1π

2
2, π

3
3; π

4
1, π

2
1π

2
2,

π1π
3
3, π

4
2;.... and an appropriate number of elastic constants m as coefficients.

A similar series can be formed from the three invariants ω1, ω2
2, ω

3
3. In the above

expansion, the free term and the term of the first grade is disregarded due to the
commonly known reasons. The terms π3

3; π
4
1, π1π

3
3, π

4
2;.... are disregarded owing

to the unique dependence between the components of strain and stress states;
then the invariant π3

3, does not play any essential role in the theory of elasticity.
The described above decomposition of the energy Φ into the two parts Φv and

Φf , done by Stokes14) for the first time and a little later by Helmholtz15), is
in this particular case right; however, in general, a linear superposition does not
simply lead to a superposition of squares. There arises a thought that this par-
ticular feature generally characterizes isotropic bodies (enabling the possibility
of transition from solids to liquids). Supposing then the possibility of splitting
the energy into the two characteristic parts also in the case considered here, we
see that in the general expansion the mixed terms, namely π1, π2

1, π
2
1π

2
2,...., are

disregarded. Finally, we obtain the result (19), where

(22)
Φv = m2vπ

2
1 +m3vπ

3
1 +m4vπ

4
1 + ... ,

Φf = m2fπ
2
2 +m4fπ

4
2 + ... .

The series written above are of course convergent; their sums indeed present the
energies Φv and Φf .

We obtain the components of the state of stress by differentiating Φ with
respect to the components of the strain state. Using them, and even in a general
case, that is without reducing the energy terms, one can easily prove that the
invariants of one state are functions of the invariants of the other state. In general
then, we have

(24) πi = πi (ω1, ω2, ω3) and in reverse ωi = ωi (π1, π2, π3) ,

where i = 1, 2, 3.
In this way we have finished reviewing the theoretical means used in devel-

oping the hypotheses of material effort. Let us now look closely at the arduous
way they had to go. The whole effort and wit of the authors of the hypotheses of
material effort were focused on producing from the six components of strain or
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stress states a single mathematical expression that would experimentally char-
acterize itself with constancy or at least possibly simple, definable variability.
That moment there arose an idea that one handles three components more eas-
ily than six. Basing on this, the principal components were introduced. This
smooth simplification caused a new necessity: to introduce the inconvenient in-
equality ε1 ≥ ε2 ≥ ε3, or σ1 ≥ σ2 ≥ σ3. We do not realize in general what
a great disadvantage in hypotheses of material effort this inequality presents.
Let us suppose that one uses such a hypothesis in a certain particular case. The
theory of elasticity or the science of strength of materials provides us with the
solution of the particular problem by giving six components as functions of spa-
tial coordinates; external loads and dimensions of the investigated element play
the role of parameters while the elastic constants are coefficients. We obtain the
three principal components from the cubic Eqs. (3) or (4); since, in general, these
components are different and real, the solution must be obtained with the use of
transcendental functions: in such a solution all the details of calculation are lost.
Finally, to crown it all, one has to fix the order ε1 > ε2 > ε3 or σ1 > σ2 > σ3,
which is simply impossible; the hypothesis is of no general use. That these details
escape the common notice is due to the fact that we have accustomed ourselves
to simplifying some problems to their two-dimensional form, where the above
difficulties cancel to a considerable degree.

In search for a possibly simple combination of components defining the ma-
terial effort, primitive means were initially used. In this way the hypothesis of
a constant tension σ1 disregarded the two remaining principal stresses σ2 and σ3

and, respectively, the hypothesis of a constant elongation ε1 neglected the two
principal strains ε2 and ε3. Astonishing! The stress hypothesis was quickly de-
nied acceptance in favour of the strain hypothesis; an exact physical justification
was being seen in the expression: a system of stresses which causes the greatest
elongation is a measure of critical material effort (18). If the stress hypothesis
had been put into the following words: a system of strains which causes the great-
est tension (17) is a measure of critical material effort, such hypothesis would
certainly linger till nowadays in various textbooks and almanacs, just like its ri-
val. But still they are both asymmetrical and both of them are erroneous. Later
corrections, that is lower limits introduced with the help of constant pressure σ3

or constant contraction ε3, are not worthy much more. A properly constructed
hypothesis should express itself with the same groupings of components on both
grounds; while here the equalities ε1 = a1, ε3 = a3 are not corresponded by
σ1 = b1, σ3 = b3 and the same in the reverse way (17), (18). All attempts of
further resort in this direction failed; the dubious worth of Bach’s coefficient
α0 is at present widely known16).

Employing single components did not cause the desired result, so the use of
simple sets of groupings of strains or stresses was introduced. The hypothesis of
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constant shear stress τII (10) (Coulomb5), Guest17))has indisputably a fun-
damental significance in the development of the study of material effort18); only
very precise experiments proved its very good, though approximate character. It
is the effect of the mathematical form of the hypothesis; one should pay careful
attention to the fact that the equality τII = b corresponds to by the equality
1
2γII = a and the same in the reverse direction (17), (18). The substance of the
hypothesis is then independent of the choice of the units of measurement. Its
minor errors are caused by the absence of the intermediate component. That
these errors did not go far beyond the practical limit is only due to the fact that
the range of application of this hypothesis is very narrow; viz. it refers only to
materials whose behaviour in critical tension kt and compression kc is expressed
by the equality kt = kc = k.

The matter with the Duguet19) and Mohr20) theory presents itself a bit
worse. This hypothesis in the general form:

(25) g (σII , τII) = b

makes a clear progress in the development of the study of material effort. A gen-
eralisation inherent in the theory (25) can be even to a certain degree well ex-
plained, since the stresses σII and τII belong to the same orientation; on a pic-
torial scheme the three stress circles move along the σ axis and change their
total perimeter (13) in a continuous manner. But this interpretation fails in the
ground of strain, since, even though τII corresponds with the magnitude 1

2γII ,
the stress σII is not corresponded by εII but by (in a linear approximation):

εII +
µe

1 − 2µ
=
ε1 + 2µε2 + ε3

2 (1 − 2µ)
(17). It is similar in a reversed procedure. The

hypothesis is then asymmetrical; in the ground of stress it expresses itself differ-
ently than in the ground of strain.

As for the details, one should take both perspectives – from Duguet’s position
and from Mohr’s position. The first one was calculating, the other one was draw-
ing – both nearly in the same time; the stranger it seems then, that the first one
was forgotten so quickly. Duguet puts Coulomb’s premises into a mathematical
form; he assumes that the critical effects occur as a result of overcoming friction
(of the coefficient f = tanβ) and cohesion d, namely, in such a two-dimensional
orientation ξ, η, ζ for which the left-hand side of the equation τ + fσ = d
reaches its maximum; σ and τ are defined by the formulae (8). I am not sure if
it is commonly known that the intermediate stress σ2 is cancelled from Duguet’s
calculation only due to a mathematical coincidence, since the critical orientation
turned out to be the direction ξ = π

4 − β
2 , η = π

2 , ζ = π
4 + β

2 . Mohr proceeds
inversely and incorrectly; he assumes in advance and without appropriate justi-
fication, the independence of material effort of the intermediate stress σ2 and,
disregarding the two stress circles, he surrounds the series of circles (σ1, σ3) by
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an envelope and in consequence, with the help of the consideration of not the
material effort itself but the geometrical features of the pictorial scheme of the
stress circles, he comes to the same critical orientation and the same scheme of
envelope as the one (but not called this name) found by Duguet. These details
have been overlooked in the literature; Mohr’s unquestionably justified authority
weighed here more than his theory of material effort.

This theory is then unfit for a general use for the reasons explained above
(the inconvenient inequality) and incorrect due to the proved asymmetry. Also
experiments do not support it completely; envelopes for different groupings of
components do not and cannot mutually cover; the influence of the intermediate
stress σ2 cannot be omitted. And even if such a particular envelope existed,
it would not suit characterizing material effort in this case; the experimental
details as well as the mathematical arguments and to some extent – even the
hypothesis itself, demand and prove that Mohr’s envelope does not surround
all possible critical circles, since some of them are hidden inside the envelope
without touching it.

This detail in the case of existence of the said envelope does not prove fun-
damentally the incorrectness of the Duguet-Mohr theory; it only indicates that
the coordinate system (σ, τ) is inadequate for expressing the substance of this
hypothesis. The appropriate system for this hypothesis would be the system
(σII , τII), in which all the critical states find their place in the form of the
points (σII , τII). This subtlety has also escaped notice, which can be proved
by the graphical schemes found in the immense number in various publications
and drawn exactly due to Mohr’s recipe. Meanwhile, it is clear that it is easier
to put the point in the system (σII , τII) than to draw a circle with the center
coordinates (σII , 0) and the radius τII in the system (σ, τ). As for the angles –
a simple relation sinβ = tanα between the slope of the tangent β = arctan f
in the system (σ, τ) and α in the system (σII , τII) (α, β measured from the
negative sense of the axis of abscissae) has also escaped notice. The whole mis-
understanding lies in the fact that it is commonly assumed that the envelope is
the essence of Mohr’s hypothesis while it is untrue: the essence of the hypothesis
is the assumption of existence of the function (25).

There is no need for proving that every hypothesis can be graphically illus-
trated by a single-parameter set of envelopes; it is enough to make this parameter
(c) dependent on the value σ2 in the following way:

(26) σ2 =
1 + c

2
σ1 +

1 − c

2
σ3 = σII + cτII ,

where c is limited by the inequality −1 ≤ c ≤ 1; each c corresponds one envelope.
This can be clearly seen in the illustrations to experiments on brittle materials
for which, due to technical difficulties, laboratories apply the two extreme cases
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c = −1, c = 1, or rarely c = 0. These envelopes – as I have mentioned – are not
identical. In this way, the general incorrectness of all hypotheses which disregard
the intermediate stress σ2, and in particular the Duguet-Mohr one, is being
stated.

The attempt at mathematical justification of the theory of material effort
made by Duguet, close to correctness and the only one known in the literature,
failed. This attempt shows clearly that there exist no theories of material effort,
there are only hypotheses of material effort. In this field one must not prove but
should only verify.

With passing of time, the failures, which I have presented, have forced one to
a considerable carefulness in formulating hypotheses. The generality of the hy-
pothesis discussed above is already a proof of this fact. Hertz21) went even fur-
ther. He suggested namely to represent each of the three components by a point
in the coordinate system (σ1, σ2, σ3) and to obtain the equation of the surface
constructed in this manner as the desired function. If we look closely at Hertz’s
concept, we see that there is a lot of – let us say – practical sense in it, but noth-
ing more. Hertz did not know really what to think about the material effort.
Haigh22), an Englishman, took up Hertz’s suggestion (independently of him, it
seems) and developed it with reference to all hypotheses known by himself; we
did not witness any significant progress in the field of material effort due to this
fact.

In the meantime, the needs of theory and practice were insistently demand-
ing some plausible hypothesis. Sometimes this pressure caused desperate actions.
Becker23), an American, overlapped (in the exact meaning of this word) the
hypothesis τII = b on the hypothesis ε1 = a1, ε3 = a3. Then, he multiplied the
first one by 1.2 (Bach’s 1.3 reminds itself) and, finally, in the system (σ1, σ3)
he obtained for plane states a decagon whose outline agreed with the experi-
ments. Westergaard24) drew this outline along the line σ1 = σ2 = σ3 and has
obtained in the Hertz-Haigh system a prism deceptively similar to the Huber-
Mises-Hencky cylinder; their cross-sections differed only by 8 per cent. To use
such hypothesis is simply impossible.

The hypothesis developed in the doctor’s dissertation (TH Stuttgart) by
Sandel25) is more demanding in this aspect; it is a classic example of . . . a false
theory. According to this hypothesis, in case when κ = kc

kt
> 3 (and we know

technical materials for which κ reaches even the value 20), the three following
states should be considered to be equal in terms of material effort σ1 = −∞,
σ2 = −∞, σ3 = −∞; σ1 = 0, σ2 = −∞, σ3 = −∞; σ1 = +∞, σ2 = −∞,
σ3 = −∞; it is completely sufficient to demonstrate the value of this theory.
However, the example of Sandels hypothesis is very worthy. His theory relates
linearly maximum shear strain 1

2γII with a volumetric strain e = 3π1; it is then
symmetrical since in terms of stress the above expressions (18) correspond to
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magnitudes τII and s = 3ω1 constructed in an analogous way. Where to search
for the cause of the incorrectness? The answer is simple: the magnitudes 1

2γII and
π1 are not connected (9), (11); similarly to τII and ω1 (10), (12). Since the first
ones are the tangent components of the orientation φ = π

4 = ψ, χ = π
2 , the other

ones express the normal components of the orientation φ = χ = ψ = arccos 1√
3
,

that is of a totally different one. It is – as we see – a case opposite to the
Duguet-Mohr’s one, where the referred expressions were used, but moving from
one system of units (variables – ed. note) to the other induced the asymmetric
results. A correctly constructed hypothesis should satisfy both conditions.

I have noticed with surprise (EMPA Diskussionsbericht Nr. 28 ) that Sandel,
without explaining reasons, abandoned the theory he had been previously work-
ing on and privately informed about the development of a new one about the
constant “resultant” strain ε21 + ε22 + ε23 = a2. This hypothesis has a much nar-
rower range of application, namely only for the cases where κ = 1; it does not
lead then to so many distinct contradictions as the former one. However, it is
still incorrect: the sum of squares of principal components does not have any
known significance. The hypothesis is asymmetrical: the expression ε21 + ε22 + ε23
corresponds, according to Hooke’s law (18), to a more extent expression in stress

components: σ2
1 +σ2

2 +σ2
3 +

2µ (1 − 2µ)

1 + 3µ− µ2
(σ2σ3 + σ3σ1 + σ1σ2), which reduces to

the symmetrical hypothesis expressed in stress components only for the theoret-
ical value µ = 1

2 , possible in materials with κ = 1 only in plastic regions. One
cannot develop every couple of years any new, completely different hypotheses
without exposing oneself to suspicion that one has recognized the former one as
incorrect.

It will not be irrelevant here to state a certain general remark induced by
the review of all the known hypotheses: all theories involving Poisson’s ratio
µ in their mathematical form are more or less incorrect. For, elastic constants
have nothing in common with the material effort or, more precisely: it is not the
material effort that depends on them, but they depend on the material effort.
If we are considering the dimensions of a bar in tension, we do not think of the
constant E or µ, but of the allowable stress σ1 = kt; if we are designing a twisted
shaft, we do not ask about the constant G or µ but about the admissible effort,
whose measure is τII = ks. It must be similar in a general three-axial case.
Calibrating the empirical facts by the constant µ completely misses the point
and is only an unfortunate burden to the form of the theory of material effort.
It is a detail which, apart from other facts, speaks against Sandel’s new concept.

A great step forward in the development of the hypotheses was assuming by

Beltrami8), Huber26) and Haigh22) the energy Φ =
3

2

1 − 2µ

E
ω2

1 +
3

4G
ω2

2 (19),

(20), (21) as a measure of critical material effort. The energy-based theories have
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a lot of characteristics of being probable. Material effort is a directionless magni-
tude (by the assumption of material isotropy – ed. note) – a scalar, and energy is
also a scalar. The energy is the expression of independence of the state of strain,
or stress, of our fancy of choosing directions of reference; material effort is also
independent of the choice of a coordinate system. A change of units of calculation
(variables - ed. note) does not reflect on the shape of the theories, since we also

have: Φ =
3

2

E

1 − 2µ
π2

1 + 3Gπ2
2 (19), (20), (21). The hypothesis expresses itself

in the most general way by six components; conversion to principal components
consists in deleting the tangent ones. The inequality, which was used in other
hypotheses precluding their further discussion and application, here cancels out
from the calculation completely. The magnitudes π1, π2 or equivalently ω1, ω2,
are not in conflict with each other; they hold distinct positions on the field of
strain as well as stress (11), (12).

It was difficult at first to find any better means. And, in spite of all, there
was a great need to find such, since the new hypothesis – even in the narrow
range of its application – did not satisfy our demands for exactness. If we look
closer at the essence of this failure, we see that there is only one reason for this
failure. The hypothesis was burdened with the presence of Poisson’s ratio µ;
as I have mentioned above, it is a rather general cause of the incorrectness of
a considerable number of hypotheses.

There exists in the literature a faint, probably unconscious, attempt to re-
move this constant. From Wehage’s27) theory (1905) it follows that he considers
the expression σ2

1 +σ2
2 +σ2

3 = b2 as a measure of material effort; it is nothing else
but Beltrami’s hypothesis for µ = 0. Sandel’s new approach then consists only
in replacing the units σ with ε. One can advance identical critical arguments
against Wehage’s theory.

Only Huber26) (1904) gave the matter a favorable turn by taking under
consideration the decomposition of energy introduced by Stokes12) and Helm-

holtz13). His hypothesis, set in a letter to Föppl28), contains an unusual idea.
This hypothesis has all the advantages of the theory discussed before and apart
from that, it gives a certain generalization by introducing two critical regions:
ω1 ≥ 0 and ω1 ≤ 0. Unfortunately, the range of the hypothesis still remains
narrow: 1 ≤ κ ≤ 1.225, owing to the incomplete omission of the constant µ.
Apart from that, the hypothesis comes from one region to the other one in
a discontinuous manner.

According to the above reasons, only the second part of the Huber hypothesis
Φf = 3

4Gω
2
2 = b2, and without the restrictions concerning ω1, has been accepted

in the literature. Tests in the first place and Hencky’s papers29) from the field of
theory of plasticity in the second case contributed to this fact. Mises’s30) (1913)
solely graphical argument of a sphere as a surface of critical states in the system
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of tangent principal components had a considerably smaller influence. Based
on erroneous mathematical and logical premises, Roš and Eichinger’s efforts to
present the hypothesis as a general expansion of Mohr’s idea have completely no
meaning. It is enough to say that the referred proof describes the strain state
of a body with the help of only three, and moreover – tangent components,
and that it neglects difference between a vector and a tensor (by introducing
a geometrical summation of components of strain state without regard to their
respective two-dimensional orientation) and that, finally, as a consequence of the
above mistakes, it describes isotropy by the material constants characterizing
material that depend on the direction. On the other hand, among experiments,
one should put Roš and Eichinger’s31) tests on the first place. From a whole
series of facts stated in EMPA, one fact demands a special attention; Roš proved
empirically the mathematical equality Φf = 3

4Gω
2
2 = 3Gπ2

2 (21) in the meaning
that one can use ω2 equally well as π2 as a measure of material effort of plastic
materials κ = 1. It clearly confirms my supposition that the change of variables
should not reflect in any way on the form of a hypothesis.

Huber-Hencky’s theory discredited a whole series of other hypotheses at one
go. Final accounts with a very near Coulomb-Guest’s theory were made easier
to settle by Roš31), Ensslin, Lode32) and many other researchers’ great exper-
iments. Presently, no one doubts its truthfulness for plastic metals characterized
by κ = 1. In this area the question of material effort has been definitely solved.
If further, verifying tests are being performed, it is only due to extend the inter-
val of its validity with respect to the types of stress states, namely to possibly
advance the two border limits: hydrostatic uniform tension on the one hand and
the corresponding pressure on the other.

However, the matter has not been settled in general; there remain all the
materials κ > 1, that is a great majority of technically important materials.
There were attempts to solve this difficult task, yet still simplified by a large
amount of the existing material. A careful reader guesses at once what such
a theory should look like in its general shape. It should relate to Huber-Hencky
theory like the Duguet-Mohr hypothesis relates to Coulomb-Guest hypothesis.
One should be a generalization of the other; from the more general one, there
should follow a more specific one as a particular case.

Unfortunately, this direction has not been exactly followed. Schleicher33)

(and Mises at the same time, it seems) picked up Huber’s general idea; instead
of – as primarily Huber had done – dividing the critical groupings into the two
regions ω1 ≥ 0 and ω1 ≤ 0, he made a division into an infinitely large number
of infinitesimally small areas, he fixed a different measure of material effort in
each of them and moved on to a limit in a purely mathematical sense. To get
rid of the suspicion of the deciding meaning of the energy – based idea or maybe
to attain originality, he did not introduce into the calculation the essential com-
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ponents of Huber’s general theory, that is Φv and Φf , but ω1 =

√

2EΦv

3 (1 − 2µ)

and σ0 =
√

2EΦ, which are still in a close relation to the latter. And this was
the critical mistake of his theory g (ω1, σ0) = b, since in this manner it lost the
influence of the energy of distortion Φf and shut itself the way to transition to
Huber-Hencky hypothesis in a specific case κ = 1. This hypothesis flashed up
for a moment and then vanished dumped by. . . its author (Bauingenieur, 1928 );
for, on the occasion of calibration of elementary experiments on shear, the hy-
pothesis demanded for concrete µ = 2.8 or 5.4, which was too far beyond the
possibility 0 ≤ µ ≤ 0.5. The number µ led the hypothesis to catastrophe. The
curve g (ω1, σ0) = b, assumed by Schleicher to be typical exclusively for plastic
materials, can be obtained from his theory for brittle materials, as marble, and
inversely. A comprehensive critics of the discussed hypothesis can be found in
my article1). One should not be surprised then that Schleicher abandoned his
theory, for the sake of the rests of appearances he introduced a new hypoth-
esis only under the name of a different mathematical form. The error lies in
the false assumption of the relation between Φ and Φf , that is – the relation
which is never fulfilled by brittle materials and by plastic ones – only approxi-
mately.

The review of the above remarks allows one to judge the mistakes in the exist-
ing hypotheses and draw conclusions concerning the correctness of the theoretical
construction of hypotheses of local material effort. They can be summarized in
the following way:

1. A mathematical form of a hypothesis of material effort should be charac-
terized by continuity and simplicity.

2. The hypothesis should be expressed in general by six components.

3. The choice of units of calculation (variables – sci. ed. note) should not
influence the substance of the hypothesis.

4. The use of principal components should not be restricted by any numerical
sequence of them.

5. Single terms built from the components must have a mechanical sense
(from the point of view of continuum mechanics).

6. Sets of such terms must have a distinct and concrete meaning.

7. Such set cannot be calibrated by elastic constants (as e.g. µ).

8. In the particular case of plastic materials of the characteristic kt = kc = k,
that is κ = kc

kt
= 1, the hypothesis should transform to the Huber-Hencky’s

theory.

9. The number of parameters like kt, kc, ks,... should be possibly small.

10. The hypothesis should correspond with the experiments.
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I tried to settle a hypothesis that would meet all the requirements listed. It
can be generally formulated in the following way:

I. The local material effort of isotropic bodies is expressed by a function created
from three invariants of strain state, that is:

(27) F (π1, π2, π3) = A.

II. The local material effort of isotropic bodies is fully described by three invari-
ants of stress state in the form:

(28) G (ω1, ω2, ω3) = B.

These two hypotheses, though expressed by different variables, are not differ-
ent, as it could seem to be after our experience with a great number of previous
hypotheses; on account of the relations (24) they are identical.

In the above statements we give, apart from a new, very general hypoth-
esis, also a new way of presenting all hypotheses in the orthogonal reference
system (π1, π2, π3) or equivalently (ω1, ω2, ω3). All critical states, e.g. plane
states, are referred by points lying on the plane (π1, π2) or equivalently (ω1, ω2);
uniform hydrostatic states find their representation here in points lying on the
plane (π1, π3) or (ω1, ω3). The Huber-Hencky hypothesis is here illustrated by
a plane parallel to the plane (π1, π3) or (ω1, ω3). If particular points (π1, π2, π3)
or (ω1, ω2, ω3) in a particular series of experiments generate a surface with
two finite curvatures, the hypothesis should remain valid and should be ap-
plied in the general form (27) and (28). Though, one should expect that the
invariant π3 or equivalently ω3, does not play any prominent role in defining
the material effort. It would be represented by a cylindrical surface of gen-
erators parallel to the direction π3 or equivalently ω3, or by simplified equa-
tions

F (π1, π2) = A,(29)

G (ω1, ω2) = B.(30)

The simplification implies the following suppositions:

III. Energy of distortion and certain part of energy of volumetric strain, which
depends on the strain state and individual characteristics of a body, are measures
of the material effort.

As we have mentioned above, the invariant π3 of necessity cancels out from
the energy term. Moving on to the other variables, we can express the State-
ment III in the following manner:
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IV. About material effort decides the function built from the energy of elasticity
in general shear and hydrostatic uniform stress, namely – the Eq. (30).

The two seemingly different definitions due to (24) are also convergent here.
The statements III and IV have a certain disadvantage; they use the word “en-
ergy” taken from the grounds of elasticity. Whereas, the presented hypothe-
sis should be valid in all regions of material effort – of course, at the cost
of the appropriate change of numerical parameters characterizing the mater-
ial in each region. It is, to some extent, a disadvantage common for all the
energy-based hypotheses. To avoid the above, we come to the following defini-
tion:

V. Critical material effort depends quantitatively on strains of the orientation
φ = χ = ψ = arccos 1√

3
referred to principal directions.

As I have mentioned – those are the normal strains π1 and the tangent ones
π2 (11). In this way we come again to the form (29) without exposing ourselves
to the blame for limited validity of the hypothesis.

Statement V demands a small explanation. If we assume that the material
effort is really caused by components of a certain direction then, on the as-
sumption of isotropy of the body, it is clear that there can be only one such
orientation which is neutral regarding the principal directions and it is the only
one assumed above. I lay strong emphasis on the fact that one comes to this ori-
entation exclusively in the way shown here, that is in the way of logical reasoning
and assumption. The attempt existing in the literature (Roš and Eichinger) at
arithmetical proof of the choice of exactly this direction among all the others, is
false from the very foundations; in the science of material effort nothing can be
proved, one can only experimentally verify the accuracy of some logical assump-
tions.

The hypothesis V can be transferred to the ground of stress, namely:

VI. Critical material effort is produced by stresses in the neutral orientation
φ = χ = ψ = arccos 1√

3
.

It is mathematically expressed by the Eq. (30). Presently, this orientation is
being suspected to be a slip-plane. The above justification is a generalization of
the Huber-Hencky theory in the sense of stress (similarly as Duguet-Mohr relates
to Coulomb-Guest).

In the literature on material effort there are sometimes graphical proofs of
the hypotheses given (Mohr, v. Mises). Let us also present one here:

VII. In critical states, a system of three strain circles moves along the axis of
abscissae changing its total area in a continuous manner, due to its position.

As we have proved, this surface it proportional to π2
2 (14), by introducing π1

as the coordinate of the position of the complex of circles we come again to (29).
Just as well we can agree for the following statement:
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VIII. The manner of change of the magnitude of the surface and position of the
three stress circles of critical states changes, that is the relation (30) is a measure
of material effort.

Both graphical explanations are identical since the system of three strain cir-
cles is – independently of the existence of Hooke’s law or the quality of the
investigated critical state – always homothetic to the complex of stress cir-
cles.

In this manner, the discussed hypothesis has been explained in eight different
ways; in particular: in a purely mathematical way (the invariants) on the grounds
of strain, stress or energy and, finally, in a graphical scheme. All these ways lead
to one result, what cannot be said about all the other hypotheses, known to us.
The presented theory belongs to all the hitherto known groups and at the same
time to none.

The above hypothesis in the incomplete form II and in the complete ones IV
and VI. As well as VIII (with a great number of details, not given here due to the
space restrictions) I have developed in 1927 and published in my dissertation “A
study on hypotheses of material effort” (issued by Academy of Technical Sciences
– Lwów, Jan. 7, 1928)1). After myself, on the basis of an erroneous assumption,
Schleicher33) (Bauingenieur, 1928) derived the form IV from his primary hy-
pothesis. Generalization of the so-called degree of reliability given by him can
be found also in my work.

The presented theory satisfies all the recently listed conditions. The actual
presence of uniformity of material and state of strain (stress) and additionally –
the isotropy of a body, are guarantee of the laboratory success of the theory. If
the above conditions are not fulfilled, the theory has in the highlighted sense only
an approximate meaning; and speaking precisely – the verifying tests have an
approximate sense in this case. But even then the author’s hypothesis will differ
from the presently launched Duguet-Mohr theory – and will differ significantly,
since it will satisfy in an exact manner a whole series of remaining conditions,
which cannot be stated with respect to the competitive theory.

Apart from this, deviations from the experiments here can be removed in
a relatively simple way. I performed such an attempt in the work referred above;
it has led to – as it will turn out – most favorable results. However, before I shall
speak about this, it will not be irrelevant to discuss first some practical details
concerning the conditions 9 and 10, which have been not discussed as yet.

The question of the number of constant parameters in the mathematical form
of the hypothesis has not been discussed comprehensively in the literature as yet.
One cannot precisely state what number of the simplest facts like:
(i) uniaxial tension σ1 = kt, σ2 = 0, σ3 = 0,
(ii) uniaxial compression σ1 = 0, σ2 = 0, σ3 = kc,
(iii) simple shear σ1 = ks, σ2 = 0, σ3 = −ks
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and so forth, the construction of the functions of material effort should be based
on. This matter should be elucidated. In all publications known to myself one
can see a silent suggestion of two parameters. It reveals itself evidently in the
efforts to state the relation ks = f (kt, kc). But has a unique relation been
found? Is it possible to infer the whole shape of the critical surface exclusively
from the traces of coordinate axes? Is it enough to know only the behaviour of
a body in one, the most simple case ω1 > 0 (c = −1) and in another, equally
simple one ω1 < 0 (c = 1)? Should not one of the critical states from the range
ω1 = 0 (c = 0) be also taken under consideration?

The answer can be delivered by a whole series of not too complicated ex-
periments on various materials conducted only for the three first states (i), (ii)
and (iii). The following, rather general formulae

ks = sa
kt + kc

2
√

3
, ks = sg

√

ktkc

3
, ks = sb

2√
3

ktkc

kt + kc

or other, similar to these, could be used as the basis of an arithmetical verifica-
tion. It is worthy of notice that the harmonic formula results mainly from linear
hypotheses and the geometrical one - from square hypotheses; the arithmetical
one has the least prospects for success. It is obvious that the numerical coefficient
s cannot be kept absolutely constant. Maybe in can be put in the form of a func-
tion s = s (κ ); but if it would be unique, it is hard to say. However, in general, it
seems that developing the hypotheses with two constants is incorrect; they can
have an approximate meaning, limited to a certain range. Three constant stress
parameters in general could be a starting point.
(Sci. ed. note: In the doctoral dissertation of Burzyński, op. cit.2) pp. 111–114,
the discussed above statements of material effort hypothesis are formulated in an
equivalent way as an energy-based hypothesis, called by the Author the hypothe-
sis of variable volumetric – distortional limit energy, expressed by the following
equation:

(N1) Φf + η (p)Φv = K,

where η = w+ δ
p , 0 ≤ η ≤ 1, p ≡ ω1, is a certain material function accounting for

a particular material properties and the diminishing pressure sensitivity, while K
is a limit material constant. The core of Burzyński’s formulation of the energy-
based material effort hypothesis is the exchange of three material parameters w,
δ, K appearing in (N1) with the discussed above three material constants: kt, kc,
ks, or with the triplet kt, kc, ν, accomplished by means of the replacements:

1 − 2µ

1 + µ
w =

1 − 2ν

1 + ν
,

1 − 2µ

1 + µ
δ =

3 (kc − kr)

1 + ν
, ν =

kckr

2k2
s

− 1,

12GK =
3kckr

1 + ν
, σ2

f
= 12GΦf ,
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what results in the following formula:

(N2)
1 + ν

3
σ2

f + 3 (1 − 2ν) p2 + 3 (kc − kr) p− kckr = 0,

where ν is the so-called “plasticity coefficient” describing the degree of material
ductility. For hard and brittle materials ν < 1

2 , for hard but ductile materials
ν = 1

2 and for soft (plastic) materials ν > 1
2 , and it is assumed that 0 ≤ ν ≤ 1.

Consequently, Equation (N2) can be transformed as follows:

(N3)
1 + ν

3
σ2

f + 3 (1 − 2ν)
(

p+ σ′
)2

= k
′2,

where σ′ =
kc − kt

2 (1 − 2ν)
, k

′2 = kckt +
3

4

(kc − kt)
2

1 − 2ν
.

Generally it is assumed that ks ≥
2√
3

ktkc

kt + kc
, due to this the required transition:

kt = kc = k,
√

3 ks = k is provided. Equation (N3) describes in the plane (p, σf )
curves of the second degree. In particular:

(i) for ν < 1
2 , i.e. if ks ≥

√

kskr

3
, 1 − 2ν > 0 and k

′2 > 0 we get an ellipse,

(ii) for ν < 1
2 and kc

kt
> 1 equation (N3) describes a parabola of the second degree,

while for kc

kt
= 1 two lines parallel to the axis p are obtained,

(iii) for ν > 1
2 , i.e. if

2√
3

kckt

kc + kt
< ks <

√

kckt

3
we have 1 − 2ν < 0 and

k
′2 < 0, Equation (N3) describes a hyperbola, only one branch of which has

a physical meaning.

(iv) in particular for ks =
2√
3

kckt

kc + kt
, the hyperbola degenerates into two straight

lines intersecting on the axis p.).
The author’s theory can be adjusted to experiments in general by means of

three parameters, in specific cases – by two, and finally – by one parameter. This
cannot be said about the Duguet-Mohr theory, since, if we assume that one of
the arbitrarily chosen experimental envelopes can also be represented by three
parameters, we have to express all the remaining envelopes with the help of the
shape set in such way. Although experiments indicate that these are homothetic
curves, they at the same time prove that they are translated and rotated; then,
there are at least two additional parameters (due to the symmetry of envelopes,
the translation occurs only along the σ axis) required for calibration. Meanwhile,
the same experiments teach that the author’s theory uses none or only one
additional parameter. In this way, the point 9 would speak in favor of the new
hypothesis.
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A couple of words about uniformity of material. A simple experiment on
compression demands for brittle materials 4–6 tests, since particular results differ
from each other sometimes even by 20 per cent. What to say then about complex
experiments, in which the ratio σ1 : σ2 : σ3 assumes an arbitrary value? Can we
regard a datum resulting from one such test as reliable? Besides, can one succeed
in repeating this test? For, most often in laboratory devices, due to technical
difficulties, the directions σ1, σ2, σ3 are not associated and the preservation of
the assumed ratio σ1 : σ2 : σ3 cannot be simply realized. And there are a lot of
such measurements, either for the reason of the mentioned difficulties or for the
reason of economy. What absolute value do the resulting numbers have?

And what about the uniformity of the state of stress? Again, the simple
experiment of uniaxial compression teaches that realization of a uniform distrib-
ution of stresses in a whole body is simply impossible. However, it seemed until
now that the state obtained in these conditions was at least axially symmet-
rical. Whereas, we learn (a private conversation with prof. Roš) that it is out
of the question: careful measurements on a compressed rectangular prism show
that to obtain equal stresses along four edges of a specimen, an external resul-
tant must be placed eccentrically. Material heterogeneity causes inhomogeneity
of the stress state. And if the material does not hold any flaw, a large influence
is found on the side of the technical devices. It is commonly known that different
machines are used for different types of stress states. Each of them causes certain
experimental deviation, while moving from one device to another the deviations
change not only their values but, what is worse, maybe even their signs. However
what in the theory of compensation would be an advantage, here is absolutely
none, since the corresponding series of points on a graph are not distributed
in an arbitrary manner. One series of them goes in a continuous manner along
one curve, and another series – along another curve, and so forth. And can the
results of experiments be assumed as exactly certain?

Finally – the isotropy. This is absolutely out of the question, there is in fact
no isotropy. So perhaps quasi-isotropy, mathematically established in Voigt’s
beautiful work? It could be generally taken under consideration if the dimen-
sions of crystalline structures would be small in comparison to the dimensions
of a body. Then, due to the immense quantity of them, the disorder in orienta-
tions of particular individual ones would not distinguish any direction. To obtain
such a situation, the dimensions of specimens would have to be adequately large
in comparison to the dimensions of crystalline structures; but, in this manner
we would give way to heterogeneity of the material and additionally we would
demand very precise technical devices. And still, experimental results are depen-
dent on the size of the investigated body, which is a kind of a proof of the above.
If only the anisotropy could be theoretically defined, just like for all the known
crystals! Unfortunately, in the technical materials used these are impalpable in-
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fluences. And again we have to ask ourselves – how big are the deviations that
our measurements are burdened with?

One must always take into account the most unfavourable possibilities. Let
us assume that all the briefly described effects do not mutually cancel – on
the contrary: let us assume that they sum up, that they exist. The theoretical
hypothesis can be in this case corrected – as I have mentioned – by one additional
parameter, which unfortunately quite considerably ruins the previous harmony;
we are forced in advance to assume the inequality σ1 ≥ σ2 ≥ σ3. The correction
can be introduced in two ways, namely IV or VI and still with the same result.
The first is more arduous one for it requires longer considerations of energy
of isotropic bodies; here we will confine ourselves to use the second manner
only.

We assume that presence of the calculated deviations will make the material
effort dependent on stresses of orientation slightly different from the one used
till now φ = χ = ψ = arccos 1√

3
, and in particular that it will distinguish

one of the principal cases e.g. σ2. For this purpose, assuming generally: φ∗ =

arccos

√

λ

1 + λ
= ψ∗, χ∗ = arccos

√

1 − λ

1 + λ
, we obtain from formulae (8) the

expressions for components of this direction

(31)

σ =
λσ1 + (1 − λ)σ2 + λσ3

1 + λ
= ω∗

1

τ =

√
λ

1 + λ

√

(1 − λ) (σ2 − σ3)
2 + λ (σ3 − σ1)

2 + (1 − λ) (σ1 − σ2)
2 = ω∗

2.

The corrected hypothesis presently reads:

(32) G (ω∗
1, ω

∗
2) = B.

The additional parameter λ is limited by the theoretical inequality 0 ≥ λ ≥ 1.
The lower limit λ = 0 is – as it seems – of no significance, the upper limit
λ = 1 reduces the expressions (31) to formulae (10) and in consequence of the
theory (32) we obtain the hypothesis (25). The Duguet-Mohr theory is then
comprised in the correction (32) as a specific case. We obtain a correct theory
for isotropic bodies for a middle case λ = 1

2 . Experiments seem to teach that
deviations which have been discussed, require a correction inherent generally in
a narrower interval 1

2 ≤ λ ≤ 1. The values λ > 1 are theoretically impossible;
their presence could be explained only by basic numerical incorrectness of the
experimentally indicated stresses; this fact is possible in the case of presence of
primary stresses (internal stresses – sci. ed. note).

The bigger is the influence of inhomogeneity of material and stress state, of
experimental devices and of anisotropy is, the more λ deviates from values of
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the range: 0.5 to 1.0 – that is the more the author’s hypothesis (32) gets closer
to the Duguet-Mohr theory (25). Experimental results do not confirm the latter
one; but even though, there exists presently a tendency to apply this theory –
due to the absence of any better one. It is a wrong opinion. Let us suppose for
example that the parameter λ = 0.75, lying in the middle between 0.5 and 1.0 is
needed for the adjustment. In this case, the deviations of tests from the theories
of the author (without correcting λ) and Duguet and Mohr have practically
the same value; they are both from the experimental point of view to the same
degree wrong and they both – apparently – have equal rights to be used as an
approximate application. However, while one will be still able to raise, apart
from the approximate character, a whole series of critical arguments comprised
in the points 1–8 against the hypothesis (25), there will be only the argument
of approximation speaking against the hypothesis (29) or (30); and it will still
meet the theoretical application and simplicity requirements. These arguments
have such a dominant significance that they settle the matter in favor of the
author’s hypothesis (29) or (30), even when λ > 0.75. And regarding a complete
adjustment of the theory to the research results, it can be performed – as I have
mentioned – in the discussed hypothesis by means of one additional parameter λ
in Duguet-Mohr theory there are required at least two of them. This argument
also speaks strongly against the theory of envelopes.

As I have highlighted in the introduction, the aim of this paper is, above all,
to define the theoretical foundations of hypotheses of the material effort. For this
reason I confine the illustration of the point (10) only to a couple of interesting
experiments.

Beautiful tests on Carrara marble indisputably belong to this account. They
deserve attention even for the sole reason that they were conducted in different
laboratories and by different researchers. For the reason of the already marked
difficulties, these tests were hitherto conducted for two extreme types of load-
ing (26): σ1 < σ2 = σ3 (c = −1) or σ1 = σ2 > σ3 (c = 1). (Results from
Böker34) tests on twist performed on solid samples should be regarded as un-
certain.) Figures 1 and 2 present in the systems (σII , τII)or (ω∗

1, ω
∗
2) the results

of these experiments, conducted on three different sorts of marble by Kármán,
Böker and Roš and Eichinger. The hollow circular points (c = −1) lie due to the
Duguet-Mohr theory on a curve which is here always above the curve of solid cir-
cular points. The corresponding corrections λ = 0.73, 0.87, 0.75 (obtained not
by means of fitting, but from brief considerations) get both of the two different
types of experiments to a one common, gently bent curve in the author’s system.
It is possible that the value of the parameter λ is dependent on the crystalline
structure of a material; however, in this case λ should be common for all the
cited experiments. One should suspect rather that accidental effects, mentioned
earlier, decide on the value of this parameter.
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Fig. 1. The results of the tests on Carrara marble (marmur kararyjski), in the system
(σII , τII) corresponding to the Duguet-Mohr theory, performed on three different sorts of

marble (marmur) by Kármán, Böker and Roš and Eichinger35).

Experiments, also performed by Roš and Eichinger, on china, pure cement
and cement mortar, cannot be used for a comprehensive discussion or comparison
of hypotheses for the reason of very small number of tests (two or three pairs of
points c = ±1).

Further experiments with artificial resin, though, deserve notice. It is an
exceptionally uniform and certainly isotropic material. Unfortunately, we may
suppose that it is burdened to a considerable degree with primary stresses (i.e.
internal stresses – sci. ed. note), like all artificial preparations of this kind. We are
confirmed with this supposition by the fact that it was required to assume λ > 1,
namely λ ∼= 1.32 to adjust the experimental results to author’s theory (32).
Results of the experiments are shown in Figs. 3 and 4, that is in the system
(σII , τII) corresponding to the Duguet-Mohr theory and the author’s corrected
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Fig. 2. The results of the tests on Carrara marble (marmur kararyjski), in the author’s
corrected system (ω∗

1 , ω∗

2), performed on three different sorts of marble (marmur) by
Kármán, Böker and Roš and Eichinger35).

system (ω∗
1, ω

∗
2). As we can see, we have to do here with a completely opposite

case; the points c = −1 go beneath the points c = 1 by Mohr, while in the
author’s illustration these differences vanish.

Fig. 3. The results of the experiments with artificial resin (sztuczna żywica) in the system
(σII , τII) corresponding to the Duguet-Mohr theory35).
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Fig. 4. The results of the experiments with artificial resin (sztuczna żywica) in the author’s
corrected system (ω∗

1 , ω∗

2)35).

From the experiments on ‘brittle’ metals we take into consideration the exper-
iments by EMPA on cast iron (Elektroguss EK50 ) and (Maschinenguss HS50 ).
They are in a much more general tone than the ones cited hitherto, for they take
into account the three following types of stress states: c ∼= −1.0, 0.0, 0.3, 0.8C
(as shown in Fig. 5 and Fig. 6). But unfortunately there are on the average only
three points for each of these types, which is not quite enough for a relatively
broad interval of stresses. And in particular it is difficult to recognize what cor-
rection λ should be assumed. For this reason it has been disregarded (or more
precisely: the theoretical value λ = 0.5 has been kept) and the results have been

Fig. 5. The results of the experiments on “brittle” metals: experiments by EMPA on the cast
iron (żeliwo) – (Elektroguss EK50 ) and (Maschinenguss HS50 ) in the system (σII , τII)

corresponding to the Duguet-Mohr theory35).
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Fig. 6. The results of the experiments on “brittle” metals: experiments by EMPA on the cast
iron (żeliwo) – (Elektroguss EK50 ) and (Maschinenguss HS50 ) in the author’s corrected

system (ω∗

1 , ω∗

2)35).

presented in the theoretical system (ω1, ω2). However, even this is enough to
recognize the superiority of the invariants theory over the one of envelopes. First
of all it can be clearly seen that experimental points in the system (σII , τII)
(Fig. 5) are spread more widely than in the system (ω1, ω2) (Fig. 6). Apart from
this, it is worthy of notice that in the second system almost all experimental
results lie on straight line, while by Duguet and Mohr they lie along a curve or
more precisely – curves, since here, as well as in general, one curve is out of the

question. In other words, the relation ks =
2√
3

ktkc

kt + kc
is precisely fulfilled for

cast iron. Finally, it would be good to underline one more detail, namely group-
ing of points in the area σII > 0 or ω1 > 0. Evidently there is a confusion in
this matter in the Duguet-Mohr theory; it is not known how to lead the assumed
curve. Whereas the author’s theory sorts the data in a clear manner due to the
value c and arranges it in a clear continuous curve; in other words, it estimates
the influence of the medium stress σ2 (cf. Eq. (26) – sci. ed. note), which cannot
be said about the competitive theory.
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Finally, let us add a couple of remarks concerning tests on plastic materials.
The author’s theory transforms then into the Huber-Hencky theory or other,
similar to it if we assume λ 6= 0.5; in other words, the veracity of the hypothesis
of energy of distortion is supported by correctness of the theory of invariants;
and possible shortcomings of the energy-based theory can be removed in the
theory (32) by means of the parameter λ.

As it is known, the Huber-Hencky theory refers only to plastic materials of
a characteristic kt = kc = k. In this case we can use instead of the systems
(σII , τII) and (ω1, ω2), a common one. In general there is namely:

(33)

ω1 = σII +
c

3
τII ,

ω2 =

√

2 (c2 + 3)

3
τII .

The dependence of τII on σII disappears in the case of the discussed materi-
als in the Coulomb-Guest theory τII = k

2 (that is – the simplified Duguet-Mohr

theory); the Huber-Hencky theory ω2 =
√

2
3 k is totally independent of the influ-

ence of ω1. Regarding this fact and (33), at the same time we can write both
hypotheses in the form of equations:

(34)

τII =
1

2
,

τII

k
=

1√
c2 + 3

.

A corresponding author’s correction, that is (32), can be analogically pre-
sented in the form:

(35)
τII

k
=

1
√

2 (1 + λ) + 2c2 (1 − λ)
.

The Eqs. (34) and (35) can be easily presented in the system
(

c, τII

k

)

. Let us
notice at the same moment that for the abscissa c = ±1 we obtain one and the
same ordinate, namely τII

k = 0.5, from all the three equations.
In the contemporary literature, the Roš and Eichinger experiments on Sie-

mens-Martin’s cast steel are considered to be the foundations of the Huber-
Hencky theory. The numerical values of stress in the moment of going beyond
the upper yield point confirm this hypothesis most exactly and it was taken
under consideration. The results of these experiments are presented in Fig. 7;
we have assumed k = 2615 kg/cm2 as the mean value of all measurements
of kt and kc. The experimental data indeed fall symmetrically according to
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Huber-Hencky curve, disregarding the line resulting from the Coulomb-Guest
theory (Duguet-Mohr). The experiments on annealed cast steel conducted by
Roš and Eichinger to reinforce the hypothesis of energy of distortion have, un-
fortunately, hardly any value; 25 among the 32 tests were performed for c = ±1,
and 3 of the remaining 7 tests are in favor of the Coulomb-Guest theory, while 4
– support the Huber-Hencky theory. The same Fig. 6 explains it clearly.

Fig. 7. The Roš and Eichinger experiments on Siemens-Martin cast steel (stal lana) , with
assumed k = 2615 kg/cm2 as the mean value of all measurements of kt and kc, and the

experiments on annealed cast steel (stal zlewna)35).

As for the selection of types of critical stress states, Lode experiments on
cast iron, nickel and copper look very well in this respect; they are presented in
Fig. 8; the parameter c runs here through many more values than those by Roš
and Eichinger. Unfortunately, one and the same specimen was used several times
in these experiments which, of course, were reflected in the results and, owing to
this reason, these are less suitable for stating validity of the Huber-Hencky theory.
The experiments can be best calibrated by the parameter c = 0.6, numerically
very close to the theoretical value c = 0.5, supporting in this way the author’s
theory.

Fig. 8. The results of the Lode experiments on cast iron (żeliwo), nickel (nikiel) and copper
(miedź )35).
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Roš and Eichinger tests on aluminum, copper and tombac cannot automat-
ically confirm the validity of the hypothesis of distortion energy, because it has
been found that kt 6= kc for these materials. Apart from this, the mentioned
experiments were conducted only for three simple states: (i), (ii) and (iii), so
they are off the general, comparative considerations.

The experimental results state, as it turns out, that the author’s theory with
the correction λ is suitable for mathematical adjusting all former experiments;
it performs this adjustment in a unique way. The parameter λ gets closer to
the limit λ = 0.5 as the qualitative conditions of tests and in particular of the
material itself get better. Disregarding the defects of material and all accidental
sources of errors, we have to assume λ = 0.5 in (32) and in this way to ac-
cept the theory in its fundamental form (27) and (28) or (29) and (30), which
shows the advantages alien to Duguet-Mohr theory. The assumption λ = 0.5 is
more admissible since because brittle materials, for which the experience shows
experimental value λ > 0.5, find their application in technology in dimensions
much larger than those used in laboratories. In these conditions secondary effects
such as inhomogeneity, incomplete isotropy, etc., lose to one’s advantage their
disturbing character following in the consequence the author’s theory.

Some final remarks should be devoted to the so-called slip surfaces. This
matter does not have any fundamental meaning for the material effort; it is
only a certain side-effect, which gains significance in specific fields (problems of
theory of plasticity, expert opinions in construction disasters, partially a problem
of equilibrium of slopes, etc.)

Measurement of the angle ϑ between two planes of slip is a riddle, which –
I honestly admit – I do not understand. This measurement should be made –
strictly speaking – in one body point; since it is impossible, finite dimensions
are being used. However, there is a non-uniform stress state in the range of
these; so the slip does not occur on a plane but on a surface and moreover,
on a non-cylindrical one. Why then slip planes are being considered, and why
two of them and not three or four? What is regarded as the discussed angle in
a measurement?

Without engaging closer in understanding and probability of the discussed
problems and considering only the numerical results, we can state anyway that
the Duguet-Mohr theory does not correspond with the measured data; the acute
angle

(36) ϑ =
π

2
− β,

that is the angle between a tangent to an envelope and the axis τ , is a bit too
small in the range of states c > 0 (in fact c = 1), and immeasurably large when
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c < 0 (c = −1 in current tests). At the same time we see that the argument
of impossibility of existence of an envelope which envelopes all circles of critical
states, succeeds also at this place; since for the hydrostatic – let us say – tension,
this angle obviously has to be indefinite; the referred point cannot have any
definite tangent – hence, it cannot lie on the envelope of the remaining states.

More precise determination of the angle ϑ according to Mohr’s recipe is im-
possible with the use of other hypotheses; indeed, as I have mentioned, each of
them can be represented by a group of envelopes depending on the parameter
c (σ2), but exactly for this reason there arises a serious problem, namely – can
one in this case measure that angle from the tangent to the axis τ , or should it be
measured each time to some other direction depending on the numerical value
of c? Actions performed currently in laboratories are now being questionable.
With reference to the author’s theory the following fact can be noted: the angle
ϑ calculated from the equation

(37) cosϑ = cot δ

has the same degree of approximation to the laboratory data as the angle ϑ
taken from particular envelopes; δ means in the coordinate system (ω1, ω2) or
(

ω∗
1
, ω∗

2

)

, the acute angle between a tangent and the direction ω2 or ω∗
2
. In the

determination of δ it disappears the ambiguity present by the group of envelopes.
I do not consider the angle δcalculated in this way as a fully correct solution,
similarly as it happens in Mohr’s case.

There still arise doubts and even more serious than the previous ones. The
angle δ has a secondary meaning; the orientations of slip surfaces have the pri-
mary meaning, since only from these the value δ should be calculated. Mohr’s
concept was a kind of a stroke of genius assuming the axis σ2 as the line of in-
tersection of two slip planes (which was also mathematically proved by Duguet
on the basis of the hypothesis of internal friction). Mohr prevented his followers
from using his theory as a starting point for attempts to generalize or modify
his stand. It is obvious that if we reject Mohr’s assumption or Duguet’s results,
we face the difficult riddle. Let us pay attention to the following by the Duguet
and Mohr theory: the direction σ2 has a geometric meaning – it is the axis of
symmetry. If this direction would be highlighted so much (and not ignored, as
others say), indeed two slip planes should be assumed in the coordinate system

of principal directions. Their normals make angles ±
(

π
4 − β

2

)

and ±
(

π
4 + β

2

)

with the directions σ1 and σ3 or – in other words – planes of the systems σ1σ2 or
σ2σ3 are planes of symmetry with respect to slip. The orientations ±π

4 , π
2 , ±π

4
or ±π

4 , π
2 , ∓π

4 have a significant meaning in this theory, since the Duguet-Mohr
hypothesis uses the stresses (10) of these very directions. The normals of the slip
planes are rotated with respect to the latter by the angle β

2 ; the direction σ2
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is then a kind of axis of rotation. Finally, this direction is perpendicular to the
components σII , τII of the diagonal orientations described above. We see that so
many various points of view are connected with the theories of slip planes (25);
by Duguet and Mohr they all lead to one result and it is only thanks to the fact
of giving σ2 a privileged though unjustified position.

If we disregard this position – and, of course, we have to do that – each of
the points of view described above will lead to different results. If we assume
the existence of one arbitrary slip plane, we do not know how to reach the other
one at all. Assumption a simultaneous symmetry to two planes of coordinate
system fails, because in this way again one of the directions would be privileged.
Assuming symmetry with respect to one of the system planes leads to a number of
slip planes larger than two due to equivalence of each of the principal directions;
but, if we assume only two of them a priori, the question arises how to define
their edge of intersection. This question – at least by now – we cannot solve.

However, regardless of this, certain details of the Duguet-Mohr theory can
be generalized in reference to one slip orientation. First of all, with respect to
the remarks presented on the occasion of explaining our theory, we will assume
a plane indifferent to all principal directions i.e. φ = χ = ψ = arccos 1√

3
(8) or

its experimentally corrected form φ∗ = ψ∗ 6= χ∗ (31), instead of unreliable plane
φ = π

4 = ψ, χ = π
2 . We will assume – similarly to Duguet and Mohr – that

the slip plane is inclined to the above one by the angle β
2 , but – as it has been

mentioned above (36), (37) – there is: sinβ = cosϑ = cot δ. In this assumption
we leave the previous meaning of δ, but we lose the previous meaning of ϑ due
to introducing the new stress orientation as a starting point for calculation; the
angle δ or β is here only a measure of deviation of the slip plane with respect
to the one used for calculation. Having calculated this one with the help of δ,
taken from a graphical scheme or calculated from the function of material effort
(

cot δ = −dω2
dω1

)

, we are facing a simple analytical problem, which, unfortunately,

can have two solutions, depending on our further considerations.
Assuming that the calculated plane due to material effort has been rotated

round the axis σ2 (as by Mohr) by the angle β
2 , we obtain the following expres-

sions as direction cosines of the searched slip orientation (ξ, η, ζ):

(38)

cos ξ =

√

2λ

1 + λ
cos

(

π

4
− β

2

)

,

cosχ =

√

1 − λ

1 + λ
,

cos ζ =

√

2λ

1 + λ
cos

(

π

4
+
β

2

)

.
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from which in particular for λ = 1 we obtain ξ = π
4 − β

2 , η = π
2 , ζ = π

4 + β
2

as in Duguet-Mohr theory, which fact, of course, was easy to be predicted. The
data obtained in this manner satisfy certain elementary experimental demands.
Among other things, they e.g. confirm the result that a normal to a slip plane
makes a smaller angle with the algebraically greater stress; for, one should re-
member that the present considerations are valid for the case σ1 > σ2 > σ3.
However, a serious argument speaks against the above formulae: the direction
σ2 again has played a privileged role.

In view of the above we can act in a different way: namely, let us assume
that the calculated plane as the result of process has been rotated by the angle
β
2 round the axis perpendicular to the stresses ω∗

1
and ω∗

2
(σII and τII by Duguet).

In this way we will obtain the direction cosines of the desired orientation(ξ, η, ζ):

(39)

cos ξ =

√

λ

1 + λ

[

cos
β

2
+
σ1 − ω∗

1

ω∗
2

sin
β

2

]

,

cos η =

√

1 − λ

1 + λ

[

cos
β

2
+
σ2 − ω∗

1

ω∗
2

sin
β

2

]

,

cos ζ =

√

λ

1 + λ

[

cos
β

2
+
σ3 − ω∗

1

ω∗
2

sin
β

2

]

.

The obtained expressions are very probable. The experimental fact of de-
pendence of the position of a slip plane upon an algebraic value of principal
components is here clearly confirmed. And here also – as previously – for λ = 1
we come to orientations described by the Duguet-Mohr hypothesis. Two addi-
tional facts deserve notice. The orientation (ξ, η, ζ) depends on material effort
in two ways; firstly through the angle β, and secondly directly through the com-
ponents σ1, σ2, σ3. This seems to be right; for, it can (or rather: has to) happen
that in the graph (ω∗

1, ω
∗
2) two points belonging to two different types of loadings

(e.g. c = 1 and c = −1) will overlap; then angle β will be common for both of
them, but (ξ, η, ζ) will be not. In this way the serious shortcoming of Mohr’s
relations would be removed. The other fact is the indeterminacy of (ξ, η, ζ) in
the case when σ1 = σ2 = σ3, since then the numerator and the denominator
of the multiplier of sin β

2 simultaneously become zero; obviously, it is clear and
convincing. Apart from this, the denominator ω∗

2 can never be zero, so the given
formulae do not contain any contradictions in themselves.

As I have stressed two times, the formulae (38) and (39) have been derived
from two important assumptions; the first one consists in assuming the angle δ
as the measure of deviation of the slip plane with respect to the plane of stresses
which decide on critical material effort; and the other – in the possibility of
transition of the defined orientations (ξ, η, ζ) onto the Duguet-Mohr directions
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in case when λ = 1. Both assumptions are of course hypothetical; the first
implies the shape of the graphs (ω∗

1, ω
∗
2) or – for λ = 0.5 – the curve (ω1, ω2);

the other is probable inasmuch as it is based on a general – quoted several
times – numerical dependence of the Duguet-Mohr theory (25) on the author’s
theory (32) provided with the correction λ. As far as I know, the formulae (38)
and (39) are the only ones known in the literature attempts of this kind (of
course apart from Duguet’s calculation or Mohr’s graphical solution). I do not
attribute any distinct significance to it, anyway, not to the degree as I do in my
general theory of material effort (27) and (28) or the simplification (29) and (30).
The theory (32) has the meaning of a laboratory correction.

Zürich-Lwów, 1929
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