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The main idea of energy-based hypothesis of material effort proposed by Burzyński is
briefly presented and the resulting failure criteria are discussed. Some examples, based on the
own studies, which depict applications of these criteria are discussed and visualizations of limit
surfaces in the space of principal stresses are presented.
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1. Introduction

The aim of the paper is to present an energy-based approach to failure criteria
for materials, which reveal asymmetry in failure characteristics. It means that
in the results of tension and compression tests there is observed a difference in
the values of elastic, yield or strength limits. The energy-based hypothesis of
material effort proposed originally by W. Burzyński is presented [1–3]; and
the resulting failure criteria phrased for stress tensor components in an arbitrary
Cartesian coordinate system and in particular, with the use of principal stresses,
are discussed. As for the new results, our own applications of Burzyński’s failure
criteria for traditional and new materials are presented.

2. Failure criteria based on Burzyński hypothesis of material
effort for isotropic solids

Włodzimierz Burzyński [1] not only summarized the contemporary knowl-
edge about yield criteria but also presented a new idea how to determine the
measure of material effort for materials which reveal difference in the failure
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strength (in particular: the elastic limit) for tension and compression. According
to the original Burzyński’s hypothesis, the measure of material effort defining
the limit of elastic range is a sum of the density of elastic energy of distortion
and a part of density of elastic energy of volume change being a function of
the state of stress and particular material properties. The mathematical formula
corresponding to this statement reads:

(2.1) Φf + ηΦv = K, η = ω +
δ

3p
, p =

σ1 + σ2 + σ3

3
,

where
Φf =

1
12G

[
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

]

means the density of elastic energy of distortion, while:

Φv =
1− 2ν

6E
(σ1 + σ2 + σ3)2 =

1− 2ν

12G(1 + ν)
(σ1 + σ2 + σ3)2

is the density of elastic energy of volume change. The constant K corresponds
to the value of the density of elastic energy in a limit state, while ω, δ are ma-
terial parameters dependent on the contribution of the density of elastic energy
of volume change influenced by the mean stress p. By the symbols σ1, σ2, σ3

are meant principal stresses. By introducing the function η Burzyński took into
an account the experimentally based observation, that the increase of the mean
stress p results in the diminishing contribution of the elastic energy density of
volume change Φv in the measure of material effort. The above formulation of
the measure of material effort is precise for the limit states of linear elasticity,
typical for brittle behaviour of materials. When the limit state is related to the
loss of material strength preceded by certain plastic strain, then, the measure of
material effort (2.1) loses its foundations of linear elasticity, because in this case
inelastic states of material may occur. This is the reason why W. Burzyński sug-
gested to treat functions Φf and Φv in equation (2.1) as general strain functions,
and he emphasized this fact by the term “quasi-energies” of strain.

In the discussed measure of material effort (2.1) three material parameters:
ω, δ, K are introduced. The final form of failure hypothesis (2.1) reads [1, 2]:

(2.2)
1
3
σ2

f + 3
1− 2ν̃

(1 + ν̃)
ωp2 +

1− 2ν̃

(1 + ν̃)
δp = 4GK,

where ν̃ =
kckt

2k2
s

− 1, K =
2kckt

12G(1 + ν̃)
, σ2

f = 12GΦf . The idea of Burzyński’s

derivation lies in a particular conversion of variables. The triplet (ω, δ, K) is
substituted by another one, which results from commonly performed strength
tests: elastic (plastic) limit in uniaxial tension – kt, uniaxial compression – kc,
and torsion – ks where (ω, δ,K) → (kt, kc, ks) (cf. [1, p. 112]).
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Because of mentioned above substitution, (2.2) transforms into the form dis-
cussed also in [4]:

(2.3)
kckt

3k2
s

σ2
e +

(
9− 3kckt

k2
s

)
p2 + 3(kc − kt)p− kckt = 0,

where σ2
e =

1
2
σ2

f is an equivalent stress used in the theory of plasticity. According
to the discussion conducted in [1] and [4], the equation (2.3) in the space of prin-
cipal stresses, depending on the relations among material constants (kt, kc, ks),
describes the surfaces: an ellipsoid for 3k2

s > ktkc or a hyperboloid for 3k2
s < ktkc,

which, however, does not have any practical application. W. Burzyński also no-
ticed that there occur interesting cases if these three material constants are par-
ticularly connected, for example if they are bound together as the geometrical
average:

√
3ks =

√
ktkc, then (2.3) takes the form [1]:

(2.4) σ2
e + 3(kc − kt)p− kckt = 0.

The above equation presents the formula of a paraboloid of revolution in the
space of principal stresses. The original hypothesis of W. Burzyński [1] and
his comprehensive phenomenological theory of material effort was forgotten and
repeatedly “rediscovered” later by several authors, often in parts and without the
clarity of the “in depth” analysis and physical foundations of Burzyński’s work.
Discussion of other works containing the latter equation is presented in [4, 5].
It is worth to mention that the discussed above paraboloid yield condition finds
recent applications also in viscoplastic modeling for metal matrix composites [6].
The latter authors, as well as many others, related this condition with the names
of R. von Mises and F. Schleicher, although none of these researchers derived the
relation (2.4) (cf. [7] for the discussion of a historical background of the studied
paraboloid criterion).

3. Recent applications of the Burzyński failure criteria

Defining the strength differential factor κ = kc/kt allows to determine par-
ticular cases of the criterion, for example for κ = 1, kc = kt = k and then
ks = k/

√
3, which suits the condition assumed in the Huber-Mises-Hencky cri-

terion. After suitable transformation (2.3) takes the form expressed by stress
tensor components in the system of principal axes:

(3.1) σ2
1 + σ2

2 + σ2
3 − 2

(
kckt

2k2
s

− 1
)

(σ1σ2 + σ2σ3 + σ3σ1)

+ (kc − kt)(σ1 + σ2 + σ3) = kckt.
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If σ2 = 0, there is obtained a plane state of stress, for which:

(3.2) (σ2
1 + σ2

3)− 2
(

kckt

2k2
s

− 1
)

σ1σ3 + (kc − kt)(σ1 + σ3) = kckt.

In the space of principal stresses for
√

3ks =
√

ktkc the graphical representa-
tion of the criterion (2.3) is a paraboloid of revolution with the axis of symmetry
given by the axis of hydrostatic compression: σ1 = σ2 = σ3. In the plane state
of stress for σ2 = 0 the graphical representation of the Burzyński hypothesis is
an ellipse. The centre of symmetry of such an ellipse is defined by

Se =
(

k2
s(kc − kt)

kckt − 4k2
s

,
k2

s(kc − kt)
kckt − 4k2

s

)

and the axes of symmetry are given by

σ3 = σ1, σ3 = −σ1 +
2k2

s(kc − kt)
kckt − 4k2

s

.

If kc = kt then the centre of the ellipse is given by the beginning of the coordinate
system and the Burzyński hypothesis is equal to the Huber hypothesis; in this
case, the graphical representation of the yield surface is a cylinder of revolution
with the axis of symmetry: σ1 = σ2 = σ3.

In [8] the Burzyński material effort hypothesis was specified for some classical
experimental data discussed by Theocaris [9] and published in historical papers
of Lode [10] as well as by Taylor and Quinney [11]. This paper is devoted
to applications of the Burzyński failure criteria for our own experimental data
obtained in the recent experimental investigations of mechanical properties of
polycarbonate and the results related to the current studies of metal-ceramic
composites [8, 12, 13].

The polycarbonate samples were investigated for tension, compression and
shear performed with the use of a double shear specimen. The pictures of the
sample before and after the shear test are shown in Fig. 1.

Fig. 1. The sample 12× 12× 40 [mm] with the shearing zone 6× 6× 2 [mm] prepared
for a double shear test before and after deformation.

The numerical analysis of the shear process led to the correction accounting
for the geometry of the double shear specimen. As a result, the following data
were obtained: kc = 70 MPa, kt = 64 MPa, ks = 39.6 MPa. Application of the
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formula (3.2) shows that the Burzyński yield criterion fits very well with the ex-
perimental data for the investigated polycarbonate. This is depicted in Fig. 2 and
Fig. 3, where the graphical representations of Burzyński yield criterion are shown.

The ellipse of the plane state of stress. The experimental
data for yield strength in tension, compression and shear.

Fig. 2. Graphical representation of Burzyński yield criterion for the polycarbonate according
to our own experimental investigations.

Fig. 3. A half-parabola, being the representation of the Burzyński yield criterion for the
polycarbonate in the surface (σe, p).
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The graphical representation of the limit function for the metal matrix com-
posites (MMC), in particular alumina alloy 6061 reinforced by zircon and corun-
dum particles: 6061+2Zr+20Al2O3 [12] is presented below, Fig. 4. and Fig. 5.

The ellipse of the plane state of stress. The experimental data are marked
with solid points kc = 720.5 MPa, kt = 655 MPa and the limit shear strength

ks = 39.6 MPa is marked with an open circle.

Fig. 4. Graphical representation of the Burzyński yield criterion for the MMC composite
6061+2Zr+20Al2O3.

Fig. 5. A half-parabola, being the representation of the Burzyński failure criterion for the
MMC composite 6061+2Zr+20Al2O3 in the coordinates (σe, p).
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Further experimental tests are necessary to verify the presented above para-
boloid failure criterion. At least an independent test delivering information about
the strength in shear ks could be helpful for that. The specified formula for
paraboloid failure surface can be applied as plastic potential in calculations of
plastic deformation of metallic solids, which reveal the stress differential effect,
cf. e.g. [6] or [14]. In such a case, the information of how the ratio κ = kc/kt

changes in strain is necessary. In the numerical simulations of some examples
of plastic deformation processes presented in [14] the constant value of κ was
assumed. However, the analysis of experimental data of the particle-reinforced
metal matrix composite (PRMMC) – Al-47Al2O3 in [6] shows that the ratio
κ = kc/kt increases in strain.

Another particle-reinforced metal matrix composite 75%Cr – 25%Al2O3 (M)
was experimentally investigated [13]. The tests, of compression and tension, were
perfomed. The cylindrical specimens of the diameter 12 mm and the height of
10 mm, Fig. 6, were subjected to the compression tests with the use of the
strength machine MTS810 of the loading range reaching 250 kN. The corre-
sponding characteristics are given in Table 1.

Fig. 6. Picture of the deformed cylindrical specimen.

Table 1. Material characteristics obtained in the compression test.

Type of the composite R0.2 [MPa] Rm [MPa]

75%Cr – 25%Al2O3(M) 700 920

During the compression of the cylindrical specimen the local failure appeared.
The magnified picture (×500) of the surface with the failure sites with the use
of scanning microscopy is shown in Fig. 7. The tensile test was performed with
the use of the specimens shown in Fig. 8. The plane tensile specimens were cut
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Fig. 7. The picture of the surface of the specimen revealing the sites of failure.

Fig. 8. The shape and dimensions of the ten sile specimen.

out from the roller of the diameter 80 mm and thickness of 5 mm. In Table 2
the measured material parameters are given.

Table 2. Material characteristics obtained in the tensile test.

Type of the composite R0.2 [MPa] Rm [MPa]

75%Cr – 25%Al2O3(M) 23 24

The graphical representation of the limit function for the particle-reinforced
metal matrix composite 75%Cr – 25%Al2O3 (M) is presented below, Fig. 9 and
Fig. 10.
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Fig. 9. Graphical representation of the Burzyński yield criterion for the MMC composite
75%Cr – 25%Al2O3 (M).

Fig. 10. A half-parabola, being the representation of the Burzyński failure criterion for the
MMC composite 75%Cr – 25%Al2O3 (M) in the coordinates (σe, p).
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4. Conclusions

It is worthy of emphasizing that W. Burzyński proposed the hypothesis which
was universal in the sense of energy. Therefore, it can be applied not only to
isotropic materials, it is also applicable to different kinds of anisotropic solids
revealing, in particular, characteristic asymmetry of elastic range. W. Burzyński
presented, also for the first time, the energetic approach to determine the failure
criteria for a certain class of orthotropic materials [1]. The issue of yielding
condition of orthotropic materials, raised by Burzyński, is worth further studies
because of its promising possibilities of application for modern materials.
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