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An attempt is made to study the effects of chemical reaction and combined buoyancy
effects on an unsteady MHD mixed convective flow along an infinite vertical porous plate
in the presence of hall current. A uniform magnetic field is applied in a direction normal to
the porous plate. The governing coupled non-linear partial differential equations are solved
using an efficient Galerkin finite element method. With the help of graphs, the effects of the
various important parameters entering into the problem on the velocity, temperature, and
concentration fields within the boundary layer are discussed. Also the effects of the pertinent
parameters on the skin-friction coefficient and rates of heat and mass transfer in terms of
the Nusselt number and Sherwood number are presented numerically in a tabular form. The
results obtained show that the velocity, temperature, and concentration fields are appreciably
influenced by the presence of chemical reaction, hall current, heat, and mass transfer. It is
observed that the effect of Schmidt number and chemical reaction parameter is to decrease
the velocity and concentration profiles in the boundary layer while the velocity profiles are
increasing with increasing of hall parameter, Grashof numbers for heat and mass transfer. There
is also considerable effect of hall current and chemical reaction on skin-friction coefficient and
Nusselt number. In the present analysis various comparisons with previously published work
are performed and the results are found to be in a good agreement.

Key words: heat and mass transfer, chemical reaction, MHD, hall current, Galerkin finite
element method.

Notations

List of variables

B – magnetic induction vector,

Bo – intensity of the applied magnetic field [A · m−1],

C – dimensionless species concentration of the fluid,

Cp – specific heat at constant pressure [J · kg
−1· K],

C∞ – concentration in the fluid far away from the plate [kg · m
−3],

C∗ – species concentration of the fluid at the plate [kg · m−3],

D – chemical molecular diffusivity [m2· s−1],
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DT – coefficient of chemical thermal diffusivity, M
1L−1T−1K−1,

E – electric field,

e – electron charge [C],

Gr – Grashof number for heat transfer,

Grc – Grashof number for mass transfer,

Pr – Prandtl number,

Sc – Schmidt number,

pe – electron pressure [N · m−2],

Kr – chemical reaction parameter,

T – temperature of the fluid [K],

T ′

w – temperature of the plate [K],

T∞ – fluid temperature far away from the plate [K],

t – time plate [s],

u – velocity component in x′-direction [m · s−1],

V – velocity vector,

Vo – reference velocity [m · s−1],

w – velocity component in z′-direction [m · s−1],

g – acceleration due to gravity [m · s−2],

J – electric current density vector,

K – permeability of the porous medium,

Ha – Hartmann number,

m – Hall parameter,

Nu – rate of heat transfer coefficient (or) Nusselt number,

Sh – rate of mass transfer coefficient (or) Sherwood number.

Greek symbols
β – coefficient of volume expansion [K−1],

ρ – density of the fluid [kg · m−3],

β∗ – volumetric coefficient of expansion with concentration [m3· kg−1],

υ – kinematic viscosity [m2· s−1],

ωe – electron frequency [Hz],

τ ′

w – Shear stress [N · m−2],

τ1 – skin-friction due to velocity (u) [N · m−2],

τ2 – skin-friction due to velocity (w) [N · m−2],

ω t – phase angle [rad],

Ω – angular frequency [Hz],

ω – frequency parameter,

θ – dimensionless temperature [K],

σ – electrical conductivity [Ω−1· m−1],

τe – electron collision time [s],

τi – ion collision time [s],

ne – number of electron density,

ωi – ion frequency [Hz],

κ – thermal conductivity [W · m−1· K−1].
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Superscript
′ – dimensionless properties.

Subscripts
w – conditions on the wall,

∞ – free stream conditions.

1. Introduction

In recent years, the flow of fluids through porous media has been of principal
interest because these are quite prevalent in nature. Such flows have attracted
the attention of a number of scholars due to their application in many branches
of science and technology: in the field of agriculture engineering they are used
to study the underground water resources, seepage of water in riverbeds; in
petroleum technology they help in studying the movement of natural gas, oil,
and water through oil reservoirs; in chemical engineering their use is for filtration
and purification processes. The convection problem in porous medium has also
important applications in geothermal reservoirs and geothermal energy extrac-
tions. A comprehensive review of the studies of convective heat transfer mecha-
nism through porous media has been made by Nield and Bejan [1]. Hiremath
and Patil [2] studied the effect on free convection currents on the oscillatory
flow through a porous medium, which is bounded by vertical plane surface of
constant temperature. Fluctuating heat and mass transfer on three dimensional
flow through a porous medium with variable permeability has been discussed
by Sharma et al. [3]. Magnetohydrodynamics is currently undergoing a period
of great enlargement and differentiation of subject matter. The interest in these
new problems generates from their importance in liquid metals, electrolytes,
and ionized gases. Unsteady hydromagnetic free convection flow of Newtonian
fluid has been investigated by Helmy [4]. Chaudhary and Sharma [5] consid-
ered combined heat and mass transfer by laminar mixed convection flow from
a vertical surface with induced magnetic field. Hydromagnetic unsteady mixed
convection and mass transfer flow past a vertical porous plate immersed in
a porous medium in presence of hall current was investigated by Sharma and
Chaudhary [6]. El-Amin [7] considered the MHD free convection and mass
transfer flow in a micropolar fluid over a stationary vertical plate with constant
suction. Ramana Murthy et al. [8] discussed the effects of heat and mass
transfer magnetohydrodynamic natural convective flow past an infinite vertical
porous plate in presence of thermal radiation and hall current using Galerkin fi-
nite element method. The results of thermal radiation and heat absorption on an
unsteady MHD free convective fluid flow over an infinite vertical plate embedded
in porous medium in occurrence of thermal diffusion and diffusion thermo were
discussed by Raju et al. [9]. Anand Rao and Srinivasa Raju [10] studied the
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effects of Hall currents, Soret, and Dufour on MHD flow and heat transfer along
a porous flat plate with mass transfer. Sivaiah and Srinivasa Raju [11] stud-
ied the influence of Soret on an unsteady magnetohydrodynamics free convective
flow past a semi-infinite vertical plate in the presence of viscous dissipation using
Galerkin finite element method. Shiva Reddy Sheri and Srinivasa Raju [12]
studied the effect of viscous dissipation on transient free convective flow past an
infinite vertical porous plate in presence of magnetic field using Galerkin finite
element method. Sivaiah Sheri and Srinivasa Raju [13] studied the effect of
Hall current on heat and mass transfer viscous dissipative fluid flow with heat
absorption using Galerkin finite element method. Rao et al. [14] found the nu-
merical solutions by applying Galerkin finite element method on unsteady MHD
heat and mass transfer flow past a semi-infinite moving vertical plate in presence
of radiation and viscous dissipation. Anand Rao et al. [15] investigated the ef-
fect of hall current on MHD transient flow past an impulsively started infinite
horizontal porous plate in a rotating fluid using Galerkin finite element method.
The effects of heat and mass transfer on magnetohydrodynamic flow past a vis-
cous fluid past a vertical plate under oscillatory suction velocity embedded in
porous medium were studied by Anand Rao et al. [16].
Combined heat and mass transfer problems with chemical reaction are of im-

portance in many processes and have, therefore, received a considerable amount
of attention in recent years. In processes such as drying, evaporation at the
surface of water body, energy transfer in wet cooling tower, and the flow in
a desert cooler, heat and mass transfer occur simultaneously. Chemical reaction
can be codified as either homogeneous or heterogeneous processes. A homoge-
neous reaction is one that occurs uniformly through a given phase. In contrast,
a heterogeneous reaction takes place in a restricted region or within the bound-
ary of a phase. A reaction is said to be first order, if the rate of reaction is directly
proportional to the concentration itself which has many applications in different
chemical engineering processes and other industrial applications such as polymer
production, manufacturing of ceramics or glassware, and food processing [17].
Das et al. [18] considered the effects of first order chemical reaction on the flow
past an impulsively started infinite vertical plate with constant heat flux and
mass transfer. Muthucumarswamy and Ganesan [19] studied the effect of
first order chemical reaction on flow past an impulsively started vertical plate
in presence of uniform heat and mass flux. Muthucumarswamy [20] studied
first order homogeneous chemical reaction on flow past infinite vertical plate.
Das et al. [21] have studied the effect of mass transfer flow past an impulsively
started infinite vertical plate with heat flux and chemical reaction. The chemical
reaction effect on heat and mass transfer flow along a semi-infinite horizontal
plate had been studied by Anjalidevi and Kandaswamy [22], and later it was
extended for Hiemenz flow by Seddeek et al. [23], and for polar fluid by Patil
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and Kulkarni [24]. Salem and Abd El-Aziz [25] have reported the effect
of hall currents and chemical reaction on hydromagnetic flow of a stretching
vertical surface with internal heat generation or absorption. Ibrahim et al. [26]
studied the effect of chemical reaction and radiation absorption on the unsteady
MHD free convection flow past a semi-infinite vertical permeable moving plate
with heat source and suction. A detailed numerical study was carried out for
unsteady hydromagnetic natural convection heat and mass transfer with chem-
ical reaction over a vertical plate in rotating system with periodic suction by
Parida et al. [27]. Rajeswari et al. [28] have investigated chemical reaction,
heat and mass transfer on nonlinear MHD boundary layer flow through a vertical
porous surface in presence of suction.Mahdy [29] has studied the effect of chem-
ical reaction and heat generation or absorption on double diffusive convection
from vertical truncated cone in a porous media with variable viscosity. Recently,
Muthucumaraswamy and Ravi Shankar [30] have discussed the combined
effects of first order chemical reaction and thermal radiation on an unsteady flow
past an accelerated isothermal infinite vertical plate. Jithender Reddy et al.
[31] studied the effect of chemical reaction and radiation on unsteady magneto-
hydrodynamic free convection from an impulsively started infinite vertical plate
with viscous dissipation. Sudhakar et al. [32] studied the effect of hall current
on an unsteady MHD flow along a porous flat plate with thermal diffusion, dif-
fusion thermo, and chemical reaction by using Galerkin finite element method.
Sudhakar et al. [33] studied the effect of chemical reaction effect on an un-
steady MHD free convection flow past an infinite vertical accelerated plate with
constant heat flux, thermal diffusion and diffusion thermo by using Galerkin
finite element method. Anand Rao et al. [34] studied the effect of chemical
reaction on an unsteady MHD free convection fluid flow past a semi-infinite ver-
tical plate embedded in a porous medium with heat absorption with the help
of Galerkin finite element method. Srinivasa Raju [35] studied the combined
effects of thermal-diffusion and diffusion-thermo on unsteady free convection
fluid flow past an infinite vertical porous plate in presence of magnetic field and
chemical reaction using finite element technique. Srinivasa Raju et al. [36]
studied the application of finite element method to unsteady MHD free con-
vection flow past a vertically inclined porous plate including thermal diffusion
and diffusion thermo effects. Srinivasa Raju et al. [37] found both analytical
and numerical results of unsteady magnetohydrodynamic free convective flow
past an exponentially moving vertical plate with heat absorption and chemical
reaction.
Taken the motivation given by their work, the objective of the present re-

search was to study the effects of chemical reaction on an unsteady magne-
tohydrodynamic free convective flow past a vertical porous plate immersed in
a porous medium in the presence of hall current. Hence, the purpose of this
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study was to extend Sharma and Chaudhary [6], to study the unsteady prob-
lem which includes internal chemical reaction for the first order. The governing
equations were solved numerically using Galerkin finite element method. The
present numerical results obtained under special cases are then compared with
the analytical results of Sharma and Chaudhary [6] in absence of chemical re-
action and found to agree very favourably. Dimensionless velocity, temperature,
and concentration profiles are displayed graphically for different values of the
parameters entering into the problem like Hartmann number, Prandtl number,
Grashof number for heat transfer, Grashof number for mass transfer, Schmidt
number, Hall parameter, Permeability parameter, and Chemical reaction pa-
rameter. The influence of these pertinent parameters on velocity, temperature,
concentration fields are discussed through graphs and results are physically in-
terpreted.

Fig. 1. Physical Model of the problem.

2. Mathematical formulation

The equations governing the motion of an incompressible viscous electrically
conducting fluid in presence of a magnetic field are as follows:

• The continuity equation, defined by

(2.1) ∇ · v = 0.

This is known as the incompressible continuity equation, because it is the
form of the continuity equations obeyed by an incompressible fluid. Physically,
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incompressibility means that the density of an air parcel does not change. The
momentum equation is based on the principle of conservation of momentum,
i.e., that the time rate of change of momentum in a material region is equal
to the sum of the forces on that region.

• The momentum equation is defined by

(2.2) ρ

[
∂v

∂t
+ (v · ∇) v

]
= −∇p+ J ×B + ρg + µ∇2v −

[µ
k

]
v.

The first term on the left hand side is the local acceleration and the second
term is known as the convective acceleration term. The second term is the
term which makes the Navie-Stokes equation nonlinear, which is the source of
the great complexity of the mathematics and physics of fluid motion. On the
right hand side, the first term is the pressure gradient force, the third term
represents the body force term, the fourth term is known as the viscous force,
and the penultimate term in the square brackets denotes the bulk matrix
resistance, i.e., Darcy term. The energy equation decouples from the rest of
the Navier-Stokes equations for incompressible flow. This can be seen from
a non-dimensionalisation of the energy equation by using the definition of the
enthalpy.

• The energy equation is defined by

(2.3) ρCp

[
∂T

∂t
+ (v · ∇)T

]
= k∇2T.

The first term on the left hand side is the temporal thermal gradient and the
second term describes convection. On the right hand side, k is the thermal
diffusivity and ∇2T is the thermal diffusion term. A continuity equation is
an equation that describes the transport of some quantity. It is particularly
simple and particularly powerful when applied to a conserved quantity, but it
can be generalised to apply to any extensive quantity.

• The species continuity equation is defined by

(2.4)
∂C

∂t
+ (v · ∇)C = D∇2C +K ′

r (C − C∞) ,

where the opening term on the left hand side signifies the temporal concen-
tration gradient and the second term describes the convection term. On the
right hand side, the first term represents species diffusion and the last term is
the chemical reaction term.

• The Kirchhoff’s first law is given by

(2.5) ∇ · J = 0.
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• The general Ohm’s law, taking Hall effect into account is given by

(2.6) J +
ωeτe
B0

(
J ×B

)
= σ

(
E + v ×B +

1

eηe
∇Pe

)
,

• and Gauss’s law of magnetism is given by

(2.7) ∇ · B = 0.

Consider an unsteady flow of an electrically conducting fluid past an infinite
vertical porous flat plate coinciding with the x-axis, y = 0, taking into account
the thermal diffusion, Hall current, and heat source in presence of a uniform
transverse magnetic field. This investigation is restricted to the following as-
sumptions:

i) All the fluid properties except the density in the buoyancy force term are
constant.

ii) The plate is electrically non-conducting.

iii) The magnetic Reynolds number is so small that the induced magnetic field
may be neglected.

iv) Electron pressure pe is constant.

v) E = 0, the electric field is zero.

Let us introduce a coordinate system (x, y, z) with x-axis vertically upwards,
y-axis normal to the plate directed into the fluid region, and z-axis along the
width of the plate. Let v = ûi+vĵ+wk̂ be the velocity, J = Jxî+Jy ĵ+Jzk̂ be the

current density at the point p(x, y, z, t), and B = B0Ĵ be the applied magnetic
field, î, ĵ, k̂ being unit vectors along x-axis, y-axis, and z-axis respectively. Since
the plate is of infinite length in x and z direction, therefore all the quantities
except possibly the pressure are independent of x and z.
Now, the Eq. (2.1) gives

(2.8)
∂v

∂y
= 0,

which is trivially satisfied by

(2.9) v = −V0,

where V0 is a constant and V0 > 0.
Therefore the velocity vector v is given by

(2.10) v = ûi− V0ĵ +wk̂.

Again Eq. (2.7) is satisfied by

(2.11) B = B0ĵ.
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Also Eq. (2.5) reduces to

(2.12)
∂Jy
∂y

= 0,

which shows that Jy = constant. Since the plate is non-conducting, Jy = 0 at
the plate and hence Jy = 0 at all points in the fluid.
Thus the current density is given by

(2.13) J = Jx î+ Jz k̂.

Under the assumption (iv) and (v), Eq. (2.6) takes the form

(2.14) J +
m

B0

(
J ×B

)
= σ

(
v ×B

)
,

wherem = ωeτe is the Hall parameter. Equations (2.10), (2.11), (2.13), and (2.14)
yield,

(2.15)





Jx =
σB0

1 +m2
(mu− w),

Jz =
σB0

1 +m2
(u+mw).

With the following assumptions and the usual boundary layer and Boussi-
nesq’s approximation, Eqs. (2.2), (2.3), and (2.4) reduce to the following (Shar-
ma and Chaudhary [6]):

∂u

∂t
+v

∂u

∂y
=υ

∂2u

∂y2
−σB2

0(u+mw)

ρ(1+m2)
+ gβ(T−T∞) + gβ∗(C−C∞)− υu

k
,(2.16)

∂w

∂t
+v

∂w

∂y
=υ

∂2w

∂y2
+
σB2

0(mu−w)
ρ(1+m2)

− υw

k
,(2.17)

∂(T−T∞)

∂t
+ v

∂(T−T∞)

∂y
=

k

ρCp

∂2(T−T∞)

∂y2
,(2.18)

∂(C−C∞)

∂t
+ v

∂(C − C∞)

∂y
=D

∂2(C−C∞)

∂y2
−K ′

r(C−C∞).(2.19)

In Eq. (2.18) the viscous dissipation and ohmic dissipation are ignored.
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Now using v = −V0, T (y, t)− T∞ = θ(y, t) and C(y, t)− C∞ = C∗(y, t).
Subject to the boundary conditions

(2.20)





t≤0:





u(y, t) = 0,

w(y, t) = 0,

θ(y, t) = 0,

C∗(y, t) = 0,

for all y,

t>0:

{
u(y, t)=0, w(y, t)=0, θ(y, t)=aeiΩt, C∗(y, t)=beiΩt at y=0,

u(y, t)=0, w(y, t)=0, θ(y, t)=0, C∗(y, t)=0 as y → ∞.

For the sake of normalisation of the flow model and to facilitate numerical
solutions, the author has to make the governing equations from (2.16) to (2.19)
under the boundary conditions (2.20) dimensionless by introducing the following
dimensionless quantities:

(2.21)





η =
V0y

υ
, t′ =

V 2
0 t

4υ
, u′ =

u

V0
, w′ =

w

V0
, θ′ =

θ

a
,

C ′ =
C∗

b
, Gr =

4gβυa

V 3
0

, Kr =
K ′

rυ

V 2
0

, Grc =
4gβ∗υb

V 3
0

, Ha =
4B2

0συ

ρV 3
0

,

Pr =
υρCp

κ
, Sc =

υ

D
, K =

V 2
0 k

4υ2
, ω =

4υΩ

V 2
0

.

All the physical variables are defined in the nomenclature. Equations (2.16),
(2.17), (2.18), and (2.19) transform to the following non-dimensional forms,
respectively (dropping the dashes):

∂u

∂t
− 4

∂u

∂η
= 4

∂2u

∂η2
− Ha

(1 +m2)
(u+mw) + Grθ +GrcC − u

K
,(2.22)

∂w

∂t
− 4

∂w

∂η
= 4

∂2w

∂η2
− Ha

(1 +m2)
(w −mu)− w

K
,(2.23)

∂θ

∂t
− 4

∂θ

∂η
=

4

Pr

∂2θ

∂η2
,(2.24)

∂C

∂t
− 4

∂C

∂η
=

4

Sc

∂2C

∂η2
−KrC.(2.25)
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The corresponding boundary conditions (2.20) in non-dimensional forms are as
follows:

(2.26)





t ≤ 0 : u = 0, w = 0, θ = 0, C = 0 for all η,

t > 0 :

{
u = 0, w = 0, θ = eiωt, C = eiωt at η = 0,

u = 0, w = 0, θ = 0, C = 0 as η → ∞.

The skin-friction, Nusselt number, and Sherwood number are important physical
parameters for this type of boundary layer flow. The skin-friction at the plate,
which in the non-dimensional form, is given by

(2.27) τ1 =

(
∂u

∂y

)

y=0

ρVoυ
=

(
∂u

∂η

)

η=0

and τ2 =

(
∂w

∂y

)

y=0

ρVoυ
=

(
∂w

∂η

)

η=0

,

where τ1 and τ2 are Skin-friction coefficients along wall x-axis and z-axis respec-
tively.
The rate of heat transfer coefficient, which is the non-dimensional form in

terms of the Nusselt number (Nu) is given by

(2.28) Nu = −x
a

(
∂T

∂y

)

y=0

⇒ NuRe−1
x = −

(
∂θ

∂η

)

η=0

.

The rate of mass transfer coefficient, which is the non-dimensional form in
terms of the Sherwood number (Sh), is given by

(2.29) Sh = −x
b

(
∂C ′

∂y

)

y=0

⇒ ShRe−1
x = −

(
∂C

∂η

)

η=0

,

where Re =
Vox

υ
is the local Reynolds number.

3. Method of solution

3.1. By applying Galerkin finite element method (Raju et al. [9]) for
Eq. (2.22) over the element (e), (ηj ≤ η ≤ ηk) is:

(3.1)

ηk
ˆ

ηj

{
NT

[
4
∂2u(e)

∂η2
− ∂u(e)

∂t
+ 4

∂u(e)

∂η
−Au(e) + P

]}
dη = 0,

where B =
Ha

1 +m2
, A = B +

1

K
, P = (Gr)θ + (Grc)C −Bmw.
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Integrating the first term in Eq. (3.1) by parts one obtains

(3.2) N (e)T

{
4
∂u(e)

∂η

}ηk

ηj

−
ηk
ˆ

ηj

{
4
∂N (e)T

∂η

∂u(e)

∂η
+N (e)T

(
∂u(e)

∂t
− 4

∂u(e)

∂η
+Au(e) − P

)}
dη = 0.

Neglecting the first term in Eq. (3.2), one gets:

ηk
ˆ

ηj

{
4
∂N (e)T

∂η

∂u(e)

∂η
+N (e)T

(
∂u(e)

∂t
− 4

∂u(e)

∂η
+Au(e) − P

)}
dη = 0.

Let u(e) = N (e)φ(e) be the linear piecewise approximation solution over the
element (e) (ηj ≤ η ≤ ηk), where N

(e) = [Nj Nk], φ
(e) = [uj uk]

T and Nj =
ηk − η

ηk − ηj
, Nk =

η − ηj
ηk − ηj

are the basis functions. One obtains:

ηk
ˆ

ηj

{
4

[
N ′

j N
′

j N ′

j N
′

k

N ′

j N
′

k N ′

kN
′

k

][
uj

uk

]}
dη +

ηk
ˆ

ηj

{[
Nj Nj Nj Nk

Nj Nk NkNk

][
u̇j

u̇k

]}
dη

− 4

ηk
ˆ

ηj

{[
Nj N

′

j Nj N
′

k

N ′

j Nk N ′

kNk

][
uj

uk

]}
dη

+A

ηk
ˆ

ηj

{[
Nj Nj Nj Nk

Nj Nk NkNk

][
uj

uk

]}
dη = P

ηk
ˆ

ηj

[
Nj

Nk

]
dη.

Simplifying

4

l(e)2

[
1 −1

−1 1

][
uj

uk

]
+

1

6

[
2 1

1 2

][
u̇j

u̇k

]

− 4

2l(e)

[
−1 1

−1 1

][
uj

uk

]
+
A

6

[
2 1

1 2

][
uj

uk

]
=
P

2

[
1

1

]
,

where prime and dot denotes differentiation w.r.t. η and time t respectively.
Assembling the element equations for two consecutive elements ηi−1 ≤ η ≤ ηi
and ηi ≤ η ≤ ηi+1 the following is obtained:
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(3.3)
4

l(e)
2




1 −1 0
−1 2 −1
0 −1 1





ui−1

ui
ui+1


+

1

6



2 1 0
1 4 1
0 1 2





u̇i−1

u̇i
u̇i+1




− 4

2l(e)



−1 1 0
−1 0 1
0 −1 1





ui−1

ui
ui+1


+

A

6



2 1 0
1 4 1
0 1 2





ui−1

ui
ui+1


 =

P

2



1
2
1


.

Now put the row corresponding to the node i to zero, from Eq. (3.3) the differ-
ence in schemes with l(e) = h is:

(3.4)
4

h2
[−ui−1 + 2ui − ui+1] +

1

6
[u̇i−1 + 4u̇i + u̇i+1]

− 4

2h
[−ui−1 + ui+1] +

A

6
[ui−1 + 4ui + ui+1] = P.

When applying the trapezoidal rule (3.4), the following system of equations
in Crank-Nicholson method is obtained:

(3.5) A1u
n+1
i−1 +A2u

n+1
i +A3u

n+1
i+1 = A4u

n
i−1 +A5u

n
i +A6u

n
i+1 + P ∗,

where A1 = 2−12rh−Ak−24r, A2 = 8+4Ak+48r, A3 = 2+12rh+Ak−24r,
A4 = 2 − 12rh − Ak + 24r, A5 = 8 − 4Ak − 48r, A6 = 2 + 12rh + Ak + 24r,
P ∗ = 12Pk = 12k(Gr)θji + 12k(Grc)C

j
i − 12Bmwj

i .

3.2. By applying Galerkin finite element method (Raju et al. [9]) for Eq. (2.23)
over the element (e), (ηj ≤ η ≤ ηk) is:

(3.6)

ηk
ˆ

ηj

{
NT

[
4
∂2w(e)

∂η2
− ∂w(e)

∂t
+ 4

∂w(e)

∂η
−Aw(e) +Q

]}
dη = 0,

where B =
Ha

1 +m2
, A = B +

1

K
, Q = Bmu.

Integrating the first term in Eq. (3.6) by parts one obtains

(3.7) N (e)T

{
4
∂w(e)

∂η

}ηk

ηj

−
ηk
ˆ

ηj

{
4
∂N (e)T

∂η

∂w(e)

∂η
+N (e)T

(
∂w(e)

∂t
−4

∂u(e)

∂η
+Aw(e) −Q

)}
dη = 0.
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Neglecting the first term in Eq. (3.7), one gets:

ηk
ˆ

ηj

{
4
∂N (e)T

∂η

∂w(e)

∂η
+N (e)T

(
∂w(e)

∂t
− 4

∂w(e)

∂η
+Aw(e) −Q

)}
dη = 0.

Let w(e) = N (e)φ(e) be the linear piecewise approximation solution over
the element (e) (ηj ≤ η ≤ ηk), where N

(e) = [Nj Nk], φ
(e) = [wj wk]

T and

Nj =
ηk − η

ηk − ηj
, Nk =

η − ηj
ηk − ηj

are the basis functions. One obtains:

ηk
ˆ

ηj

{
4

[
N ′

j N
′

j N ′

j N
′

k

N ′

j N
′

k N ′

kN
′

k

][
wj

wk

]}
dη +

ηk
ˆ

ηj

{[
Nj Nj Nj Nk

Nj Nk NkNk

][
ẇj

ẇk

]}
dη

− 4

ηk
ˆ

ηj

{[
Nj N

′

j Nj N
′

k

N ′

j Nk N ′

kNk

][
wj

wk

]}
dη

+A

ηk
ˆ

ηj

{[
Nj Nj Nj Nk

Nj Nk NkNk

][
wj

wk

]}
dη = Q

ηk
ˆ

ηj

[
Nj

Nk

]
dη.

Simplifying

4

l(e)2

[
1 −1
−1 1

][
wj

wk

]
+

1

6

[
2 1
1 2

][
ẇj

ẇk

]

− 4

2l(e)

[
−1 1
−1 1

][
wj

wk

]
+
A

6

[
2 1
1 2

][
wj

wk

]
=
Q

2

[
1
1

]
,

where prime and dot denotes differentiation w.r.t. η and time t respectively.
Assembling the element equations for two consecutive elements ηi−1 ≤ η ≤ ηi
and ηi ≤ η ≤ ηi+1 the following is obtained:

(3.8)
4

l(e)
2




1 −1 0
−1 2 −1
0 −1 1





wi−1

wi

wi+1


+

1

6



2 1 0
1 4 1
0 1 2





ẇi−1

ẇi

ẇi+1




− 4

2l(e)



−1 1 0
−1 0 1
0 −1 1





wi−1

wi

wi+1


+

A

6



2 1 0
1 4 1
0 1 2





wi−1

wi

wi+1


 =

Q

2



1
2
1


.
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Now put the row corresponding to the node i to zero, from Eq. (3.8) the differ-
ence in schemes with l(e) = h is:

(3.9)
4

h2
[−wi−1 + 2wi − wi+1] +

1

6
[ẇi−1 + 4ẇi + ẇi+1]

− 4

2h
[−wi−1 +wi+1] +

A

6
[wi−1 + 4wi + wi+1] = Q.

When applying the trapezoidal rule to (3.9), the following system of equations
in Crank-Nicholson method is obtained:

(3.10) B1w
n+1
i−1 +B2w

n+1
i +B3w

n+1
i+1 = B4w

n
i−1 +B5w

n
i +B6w

n
i+1 +Q∗,

where B1 = 2−12rh−Ak−24r, B2 = 8+4Ak+48r, B3 = 2+12rh+Ak−24r,
B4 = 2 − 12rh − Ak + 24r, B5 = 8 − 4Ak − 48r, B6 = 2 + 12rh + Ak + 24r,
Q∗ = 12kQ = 12kAmwj

i .

3.3. By applying Galerkin finite element method (Raju et al. [9]) for
Eq. (2.24) over the element (e), (ηj ≤ η ≤ ηk) is:

(3.11)

ηk
ˆ

ηj

{
NT

[
4
∂2θ(e)

∂η2
− Pr

∂θ(e)

∂t
+ 4Pr

∂θ(e)

∂η

]}
dη = 0.

Integrating the first term in Eq. (3.11) by parts one obtains

(3.12) N (e)T

{
4
∂θ(e)

∂η

}ηk

ηj

−
ηk
ˆ

ηj

{
4
∂N (e)T

∂η

∂θ(e)

∂η
+N (e)T

(
Pr

∂θ(e)

∂t
− 4Pr

∂θ(e)

∂η

)}
dη = 0.

Neglecting the first term in Eq. (3.12), one gets:

ηk
ˆ

ηj

{
4
∂N (e)T

∂η

∂θ(e)

∂η
+N (e)T

(
Pr

∂θ(e)

∂t
− 4Pr

∂θ(e)

∂η

)}
dη = 0.

Let θ(e) = N (e)φ(e) be the linear piecewise approximation solution over the
element (e) (ηj ≤ η ≤ ηk), where N

(e) = [Nj Nk], φ
(e) = [θj θk]

T and Nj =
ηk − η

ηk − ηj
, Nk =

η − ηj
ηk − ηj

are the basis functions. One obtains:
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ηk
ˆ

ηj

{
4

[
N ′

j N
′

j N ′

j N
′

k

N ′

j N
′

k N ′

kN
′

k

][
θj

θk

]}
dη + Pr

ηk
ˆ

ηj

{[
Nj Nj Nj Nk

Nj Nk NkNk

][
θ̇j

θ̇k

]}
dη

− 4Pr

ηk
ˆ

ηj

{[
Nj N

′

j Nj N
′

k

N ′

j Nk N ′

kNk

][
θj

θk

]}
dη = 0.

Simplifying

4

l(e)
2

[
1 −1
−1 1

][
θj
θk

]
+

Pr

6

[
2 1
1 2

][
θ̇j
θ̇k

]
− 4Pr

2l(e)

[
−1 1
−1 1

][
θj
θk

]
= 0,

where prime and dot denotes differentiation w.r.t. η and time t respectively.
Assembling the element equations for two consecutive elements ηi−1 ≤ η ≤ ηi
and ηi ≤ η ≤ ηi+1 the following is obtained:

(3.13)
4

l(e)2




1 −1 0

−1 2 −1

0 −1 1






θi−1

θi

θi+1


+

Pr

6



2 1 0

1 4 1

0 1 2






θ̇i−1

θ̇i

θ̇i+1




− 4Pr

2l(e)



−1 1 0

−1 0 1

0 −1 1






θi−1

θi

θi+1


 =



0

0

0


.

Now put the row corresponding to the node i to zero, from Eq. (3.13) the
difference in schemes with l(e) = h is:

(3.14)
4

h2
[−θi−1 + 2θi − θi+1] +

Pr

6

[
θ̇i−1 + 4θ̇i + θ̇i+1

]

− 4Pr

2h
[−θi−1 + θi+1] = 0.

By applying the trapezoidal rule to (3.14), the following system of equations in
Crank-Nicholson method is obtained:

(3.15) C1θ
n+1
i−1 + C2θ

n+1
i + C3θ

n+1
i+1 = C4θ

n
i−1 + C5θ

n
i + C6θ

n
i+1,

where C1 = 2(Pr)− 12rh(Pr)− 24r, C2 = 8(Pr)+48r, C3 = 2(Pr)+12rh(Pr)−
24r, C4 = 2(Pr)−12rh(Pr)+24r, C5 = 8(Pr)−48r, C6 = 2(Pr)+12rh(Pr)+24r.
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3.4. By applying Galerkin finite element method (Raju et al. [9]) for
Eq. (2.25) over the element (e), (ηj ≤ η ≤ ηk) is:

(3.16)

ηk
ˆ

ηj

{
NT

[
4
∂2C(e)

∂η2
− Sc

∂C(e)

∂t
+ 4Sc

∂C(e)

∂η
− (Kr)(Sc)C

(e)

]}
dη = 0.

Integrating the first term in Eq. (3.16) by parts one obtains:

(3.17) N (e)T

{
4
∂C(e)

∂η

}ηk

ηj

−
ηk
ˆ

ηj

{
4
∂N (e)T

∂η

∂C(e)

∂η

+N (e)T

(
Sc
∂C(e)

∂t
− 4Sc

∂C(e)

∂η
+ (Kr)(Sc)C

(e)

)}
dη = 0.

Neglecting the first term in Eq. (3.17), one gets:

ηk
ˆ

ηj

{
4
∂N (e)T

∂η

∂C(e)

∂η
+N (e)T

(
Sc
∂C(e)

∂t
− 4Sc

∂C(e)

∂η
+ (Kr)(Sc)C

(e)

)}
dη = 0.

Let C(e) = N (e)φ(e) be the linear piecewise approximation solution over
the element (e) (ηj ≤ η ≤ ηk), where N

(e) = [Nj Nk], φ
(e) = [Cj Ck]

T and

Nj =
ηk − η

ηk − ηj
, Nk =

η − ηj
ηk − ηj

are the basis functions. One obtains:

ηk
ˆ

ηj

{
4

[
N ′

j N
′

j N ′

j N
′

k

N ′

j N
′

k N ′

kN
′

k

][
Cj

Ck

]}
dη + Sc

ηk
ˆ

ηj







Nj Nj Nj Nk

Nj Nk NkNk



[
Ċj

Ċk

]
dη

− 4Sc

ηk
ˆ

ηj

{[
Nj N

′

j Nj N
′

k

N ′

j Nk N ′

kNk

][
Cj

Ck

]}
dη

+ (Kr)(Sc)

ηk
ˆ

ηj

{[
Nj Nj Nj Nk

Nj Nk NkNk

][
Cj

Ck

]}
dη = 0.



238 R.S. RAJU

Simplifying

4

l(e)2

[
1 −1
−1 1

][
Cj

Ck

]
+

Sc

6

[
2 1
1 2

][
Ċj

Ċk

]

− 4Sc

2l(e)

[
−1 1
−1 1

][
Cj

Ck

]
+

(Kr) (Sc)

6

[
2 1
1 2

][
Cj

Ck

]
= 0,

where prime and dot denotes differentiation w.r.t. η and time t respectively.
Assembling the element equations for two consecutive elements ηi−1 ≤ η ≤ ηi
and ηi ≤ η ≤ ηi+1 the following is obtained:

(3.18)
4

l(e)2




1 −1 0

−1 2 −1

0 −1 1






Ci−1

Ci

Ci+1


+

Sc

6



2 1 0

1 4 1

0 1 2






Ċi−1

Ċi

Ċi+1




− 4Sc

2l(e)



−1 1 0

−1 0 1

0 −1 1






Ci−1

Ci

Ci+1


+

(Kr) (Sc)

6



2 1 0

1 4 1

0 1 2






Ci−1

Ci

Ci+1


 =



0

0

0


.

Now put the row corresponding to the node i to zero, from Eq. (3.18) the
difference in schemes with l(e) = h is:

(3.19)
4

h2
[−Ci−1 + 2Ci − Ci+1] +

1

6

[
Ċi−1 + 4Ċi + Ċi+1

]

− 4

2h
[−Ci−1 + Ci+1] +

(Kr)(Sc)

6
[Ci−1 + 4Ci + Ci+1] = 0.

By applying the trapezoidal rule to (3.19), the following system of equations in
Crank-Nicholson method is obtained:

(3.20) D1C
n+1
i−1 +D2C

n+1
i +D3C

n+1
i+1 = D4C

n
i−1 +D5C

n
i +D6C

n
i+1,

where D1 = 2(Sc)+12rh(Sc)− (Kr)(Sc)k−24r, D2 = 8(Sc)−4(Kr)(Sc)k+48r,
D3 = 2(Sc)− 12rh(Sc)+ (Kr)(Sc)k− 24r, D4 = 2(Sc)− 12rh(Sc)− (Kr)(Sc)k+
24r, D5 = 8(Sc) + 4(Kr)(Sc)k− 48r, D6 = 2(Sc) + 12rh(Sc) + (Kr)(Sc)k+24r.

Here r =
k

h2
and h, k are mesh sizes along η-direction and time-direction

respectively. Index i refers to space and j refers to the time. In Eqs. (3.5), (3.10),
(3.15), and (3.20) taking i = 1(1)n and using boundary conditions (2.26), the
following system of equations is obtained:

(3.21) AiXi = Bi, i = 1(1)n,
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where Ai are matrices of order n and Xi, Bi are column matrices having n
– components. The solutions of the above system of equations are obtained
by using Thomas algorithm for velocity, temperature, and concentration. Also,
numerical solutions for these equations are obtained by C-programme. In order
to prove the convergence and stability of Galerkin finite element method, the
same C-programme was run with smaller values of h and k and no significant
change was observed in the values of u, w, θ, and C. Hence, using Galerkin finite
element method, the result was stable and convergent.

4. Results and discussions

The similarity Eqs. (2.22), (2.23), (2.24), and (2.25) were solved numerically
subject to the boundary conditions given by (2.26). Graphical representations of
the numerical results are illustrated in Fig. 2 to Fig. 14 to show the influences of
different numbers on the boundary layer flow. In this study, the influence of the
effects of material parameters such as Prandtl number, Schmidt number, Hart-
mann number, Hall parameter, Grashof number for heat transfer, Grashof num-
ber for mass transfer, and chemical reaction have been investigated separately
in order to clearly observe their respective effects on the velocity, temperature,
and concentration profiles of the flow. Also the numerical results of skin-friction
coefficients, rate of heat and mass transfer coefficients in terms of Nusselt num-
ber and Sherwood number respectively have been observed through graphically.
During the course of numerical calculations of the primary velocity, secondary
velocity, temperature and concentration, the values of the Prandtl number were
chosen for mercury (Pr = 0.025), air at 25◦C and one atmospheric pressure
(Pr = 0.71), water (Pr = 7.00), and water at 4◦C (Pr = 11.40). To focus atten-

Fig. 2. Effect of Grashof number
for heat transfer Gr on u.

Fig. 3. Effect of Grashof number
for mass transfer Grc on u.
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Fig. 4. Effect of Hartmann number Ha on u. Fig. 5. Effect of Hartmann number Ha on w.

Fig. 6. Effect of the chemical reaction
parameter Kr on u.

Fig. 7. Effect of the chemical reaction
parameter Kr on C.

Fig. 8. Effect of Grashof number
for heat transfer Gr on w.

Fig. 9. Effect of Grashof number
for mass transfer Grc.
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Fig. 10. Effect of Hall parameter m on u. Fig. 11. Effect of Hall parameter m on w.

Fig. 12. Effect of the chemical reaction
parameter Kr on w.

Fig. 13. Effect of Prandtl number Pr on θ.

Fig. 14. Effect of Schmidt number Sc on C.
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tion on numerical values of the results obtained in the study the values of Sc
were chosen for the gases representing diffusing chemical species of most common
interest in air, namely, hydrogen (Sc = 0.22), helium (Sc = 0.30), water vapour
(Sc = 0.60), oxygen (Sc = 0.66), and ammonia (Sc = 0.78). For the physical
significance, the numerical discussions in the problem and at t = 1.0, ωt = π/2
stable values for velocity, temperature, and concentration fields were obtained.
To find a solution of this problem, an infinite vertical plate was placed in a finite
length in the flow. Hence, the entire problem in a finite boundary was solved.
However, in the graphs, the η values vary from 0 to 90. The velocity, tempera-
ture, and concentration tend to zero as η tends to 90. This is true for any value
of η. Thus, a finite length was considered in this study. The temperature and
the species concentration are coupled to the velocity via the Grashof number,
the modified Grashof number as seen in Eq. (2.22). The effects of Grashof num-
bers for heat and mass transfer are illustrated in Fig. 2 and Fig. 3 respectively.
The Grashof number for heat transfer signifies the relative effect of the thermal
buoyancy force to the viscous hydrodynamic force in the boundary layer. As
expected, it is observed that there was a rise in the velocity due to the enhance-
ment of thermal buoyancy force. Also, as Gr increases, the peak values of the
velocity increases rapidly near the porous plate and then decays smoothly to the
free stream velocity. The Grashof number for mass transfer defines the ratio of
the species buoyancy force to the viscous hydrodynamic force. As expected, the
fluid velocity increases and the peak value is more distinctive due to increase in
the species buoyancy force. The velocity distribution attains a distinctive maxi-
mum value in the vicinity of the plate and then decreases properly to approach
the free stream value. It is noticed that the velocity increases with increasing
values of the Grashof number for mass transfer.
Figures 4 and 5 display the effect of magnetic field parameter or Hartmann

number (Ha) on primary and secondary velocities. It is seen from these figures
that the primary as well as secondary velocity falls when Ha increases. That is
the primary or secondary fluid motion is retarded due to application of trans-
verse magnetic field. This phenomenon clearly agrees with the fact that Lorentz
force that appears due to interaction of the magnetic field and fluid velocity
resists the fluid motion. Figure 6 illustrates the behaviour of primary velocity
profiles for different values of the chemical reaction parameter (Kr). It is per-
tinent to mention that Kr > 0 corresponds to a destructive chemical reaction.
It can be seen from the profiles that the primary velocity reduces in the degen-
erating chemical reaction in the boundary layer. This is due to the fact that the
increase in the rate of chemical reaction rate leads to thinning of a momentum
in a boundary layer in degenerating chemical reaction. It can be seen from the
profiles that the cross flow primary velocity reduces in the degenerating chemical
reaction. Figure 7 shows a destructive type of chemical reaction because the con-
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centration decreases for increasing chemical reaction parameter which indicates
that the diffusion rates can be tremendously changed by a chemical reaction.
This is due to the fact that an increase in the chemical reaction Kr causes the
concentration at the boundary layer to become thinner, which decreases the
concentration of the diffusing species. This decrease in the concentration of the
diffusing species diminishes the mass diffusion.
The influence of both heat and mass transfer coefficients (Grashof numbers

for heat and mass transfer) on secondary velocity profiles is as shown in Figs. 8
and 9 respectively. As both the heat and mass transfer increase, this velocity
component increases as well. The influence of the hall parameter m on primary
and secondary velocity profiles is as shown in Figs. 10 and 11 respectively. It is
observed from these figures that the primary and secondary velocity profiles
increase with an increase in the hall parameter m. This is because, in gen-
eral, the Hall currents reduce the resistance offered by the Lorentz force. This
means that Hall currents have a tendency to increase the fluid velocity com-
ponents. Figure 12 shows the effect of the chemical reaction parameter on the
secondary velocity. It can be seen that as the values of this parameter increase,
the secondary velocity also increases. Figure 13 depicts the temperature profiles
against η taking different values of Prandtl number (Pr). It is clear from this
figure that as Prandtl number increases, the temperature profile decreases. This
is because the fluid is highly conductive for a small value of Prandtl number.
Physically, if Prandtl number increases, the thermal diffusivity decreases, and
this phenomenon leads to the decreasing manner of the energy transfer ability
that reduces the thermal boundary layer. Figure 14 displays concentration pro-
files C vs. η for various gases like hydrogen (Sc = 0.22), helium (Sc = 0.30),
water vapour (Sc = 0.60), oxygen (Sc = 0.66) and ammonia (Sc = 0.78). It is re-
ported that the effect of increasing values of Schmidt number (Sc) is to decrease
the concentration profiles. This is consistent with the fact that the increase
of Sc means a decrease of molecular diffusivity (D) which results in decrease of
concentration boundary layer. Hence, the concentration of species is higher for
smaller values of Sc and lower for larger values of Sc. Furthermore, it is observed
that near the boundary the thickness of the concentration boundary layer in-
creases significantly with increasing frequency but an opposite trend is noted
far away from the plate (η > 30).
The profiles for skin-friction (τ1) due to primary velocity under the ef-

fects of Grashof number for heat transfer, Grashof number for mass transfer,
Schmidt number, Prandtl number, Hartmann number, Hall parameter, Perme-
ability of porous medium, and chemical reaction are presented in Table 1. From
the above Table 1, the skin-friction due to primary velocity rises under the ef-
fects of Grashof number for heat transfer, Grashof number for mass transfer,
Hall parameter, Permeability of porous medium and falls under the effects of
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Table 1. Skin-friction (τ1&τ2) results.

Gr Grc Sc Pr Ha m K Kr τ1 τ2

1.0 1.0 0.21 0.71 1.0 1.0 1.0 1.0 2.05142214 0.54749974

2.0 1.0 0.21 0.71 1.0 1.0 1.0 1.0 2.91523360 0.76566248

1.0 2.0 0.21 0.71 1.0 1.0 1.0 1.0 3.23890159 0.87655102

1.0 1.0 0.30 0.71 1.0 1.0 1.0 1.0 2.00551483 0.53103365

1.0 1.0 0.21 7.00 1.0 1.0 1.0 1.0 1.20460657 0.33252418

1.0 1.0 0.21 0.71 2.0 1.0 1.0 1.0 1.82362254 0.58930248

1.0 1.0 0.21 0.71 1.0 2.0 1.0 1.0 2.11262295 0.86450064

1.0 1.0 0.21 0.71 1.0 1.0 2.0 1.0 2.32723154 0.55901425

1.0 1.0 0.21 0.71 1.0 1.0 1.0 2.0 1.86543369 0.58240181

Schmidt number, Prandtl number, Hartmann number, and chemical reaction.
The profiles for skin-friction (τ2) due to secondary velocity under the effects of
Grashof number for heat transfer, Grashof number for mass transfer, Schmidt
number, Prandtl number, Hartmann number, Hall parameter, Permeability of
Porous medium, and Chemical reaction are presented in Table 1. From the above
Table 1 the skin-friction due to secondary velocity increases under the effects
Grashof number for heat transfer, Grashof number for mass transfer, Hartmann
number, Hall parameter, Permeability of porous medium, and chemical reaction.
And the skin-friction decreases under the effects of Schmidt number and Prandtl
number. From Table 2 it is seen that an increase in Prandtl number leads to
decrease in Nusselt number. The Prandtl number is a measure of relative im-
portance of heat conduction and viscosity of a flow. The careful study of Table 2
reveals that for higher values of Pr = 7.0 (i.e., for water) the Nusselt number
decreases significantly. This shows that when viscosity of a fluid dominates over
conductivity then the rate of heat transfer decreases significantly. The profiles
for Sherwood number due to concentration profiles under the effect of Schmidt
number and chemical reaction are presented in Table 2. From Table 2 one can
see that the Sherwood number due to concentration profile decreases under the
effects of Schmidt number and chemical reaction.

Table 2. Rate of heat and mass transfer (Nu & Sh) values.

Pr Nu Sc Kr Sh

0.71 5.93614136 0.22 1.0 0.09151846

7.00 4.01793025 0.30 1.0 0.07492118

0.71 5.93614136 0.22 2.0 0.06648447
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5. Program validation and comparison with previous research

In order to assess the accuracy of current finite element method, the author
has compared the results with accepted data sets for the rate of mass trans-
fer for a case of magnetohydrodynamic viscous incompressible fluid flow past
a vertical porous plate immersed in porous medium in presence of hall current,
corresponding to the case computed by Sharma and Chaudhary [6], in the
absence of chemical reaction by taking different values for Schmidt number and
phase angle keeping the other parameters fixed and these results are presented
in Table 3. These favourable comparisons lend confidence in the accuracy of
the numerical procedure. Therefore, the developed code can be used with great
confidence confidence to study the problem considered in this paper.

Table 3. Sh is the rate of mass transfer (Sherwood number) results ob-
tained in the present study, and C(t) is the rate of mass transfer results

obtained by Sharma and Chaudhary.

C(t)
(Analytical results

of Sharma and Chaudhary [6])

Sh
(Present numerical results)

ω ↓ Sc → 0.22 0.30 0.78 0.22 0.30 0.78

0.0 0.2200 0.3000 0.7800 0.2200 0.3000 0.7800

0.2 0.0800 0.1200 0.3800 0.0812 0.1274 0.3875

0.4 −0.1700 −0.2100 −0.4100 −0.1747 −0.2151 −0.4162

0.6 −0.2700 −0.3500 −0.8100 −0.2755 −0.3594 −0.8188

0.8 −0.0800 −0.1200 0.3900 −0.0832 −0.1277 0.3934

1.0 0.2100 0.2600 0.4400 0.2137 0.2638 0.4492

6. Conclusions

This work investigated the effect of chemical reaction on an unsteady mag-
netohydrodynamic free convection flow past a vertical porous plate immersed in
a porous medium with hall current. The similar solutions were obtained using
suitable transformations and the resulting similar ordinary differential equations
were solved by using Galerkin finite element method (Raju et al. [9]). A para-
metric study illustrating the influence of different flow parameters on velocity,
temperature, and concentration fields were investigated. The shearing stress at
the plate due to primary and secondary velocity fields and rate of heat and
mass transfer due to temperature and concentration respectively were obtained
in a non-dimensional form. The results are presented graphically and in tables.
The author concluded that the flow field and the quantities of physical interest
are significantly influenced by these numbers.
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1. The primary and secondary motion is retarded under the effects of trans-
verse magnetic field due to the magnetic pull of the Lorentz force acting
on the flow field, whereas this motion is accelerated under Hall effect.

2. The fluid motion is retarded due to chemical reaction. Hence, the con-
sumption of chemical species causes a fall in the concentration field which
in turn diminishes the buoyancy effects due to concentration gradients.
Hence the flow field is retarded.

3. Due to the chemical reaction, the concentration of the fluid decreases. This
is because the consumption of chemical species leads to a fall in the species
concentration field.

4. It was found that when the Grashof numbers for heat and mass trans-
fer were increased, the thermal and concentration buoyancy effects were
enhanced and thus, the primary and secondary velocities increased.

5. The concentration profiles of the flow field decreases at all the points as
the Schmidt number increases. This means the heavier diffusing species
have a greater retarding effect on the concentration profiles of the flow
field.

6. The Prandtl number reduces the temperature of the flow field at all points.
The higher the Prandtl number, the sharper the reduction in temperature
of the flow field.

7. The obtained results for special cases of the problem were compared with
previously published work and found to be in good agreement.

Future research work with respect to the present one. It can be
stated for future research work that for this research problem and scope finite
element method is very useful method for solving linear and non-linear partial
and ordinary differential equations in physics, mechanical engineering, etc. The
results obtained are quite accurate as compared to other numerical methods.
Mechanical engineers use this method to solve complex problems that arise in
their research problems.

Applications of this research work. The present problem has signifi-
cant applications in soil mechanics, water purification, powder metallurgy, study
of the interaction of the geomagnetic field within the geothermal region, the
petroleum engineering concerned with the movement of oil, gas, and water
through the reservoirs. It is hoped that the results will be useful for applications
including nuclear engineering, especially in designing more efficient cooling sys-
tems for nuclear reactors, and that they can also be used for comparison with
other problems dealing with Hall current which might be more complicated. It is
also hoped that the results can serve as a complement to other studies.
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