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General form of yield condition for isotropic and homogeneous bodies is considered in
the paper. In the space of principal stresses, the limit condition is graphically represented by
a proper regular surface which is assumed here to be at least of C2 class. Due to Drucker’s
Postulate, the yield surface should be convex. General form of convexity condition of the
considered surface is derived using methods of differential geometry. Parametrization of the
yield surface is given, the first and the second derivatives of the position vector with respect
to the chosen parameters are calculated, what enables determination of the tangent and unit
normal vectors at given point, and also determination of the first and the second fundamental
form of the considered surface. Finally the Gaussian and mean curvatures, which are given
by the coefficients of the first and the second fundamental form as the invariants of the shape
operator, are found. Convexity condition of the considered surface expressed in general in terms
of the mean and Gaussian curvatures, is formulated for any form of functions determining the
character of the surface.
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1. Introduction

Let us consider ideally elastic-plastic material. In the range of elastic defor-
mation, linear constitutive law (Hooke’s Law) is considered true:

(1.1)





σ = S · ε
ε = C · σ
C ◦ S = IS

⇔





σij = Sijklεkl

εij = Cijklσkl

SijklCklmn =
1

2
(δimδjn + δinδjm)

i, ..., n = 1, 2, 3,

where σ and ε are the second order symmetric Cauchy stress tensor and infinites-
imal strain tensor (symmetric part of the displacement gradient) respectively,
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S and C are the fourth order symmetric stiffness and compliance tensors respec-
tively and IS is the identity operator in the linear space of symmetric second
order tensors. The range of validity of the Hooke’s Law is defined by a general
limit (yield) condition of form

(1.2) W (σ) < 0.

Plastic flow rule is assumed to be of the following form:

(1.3) ε̇p = λ̇∂σF ⇔ ε̇pij = λ̇
∂F

∂σij
,

where ε̇p is the plastic strain rate tensor, F is the plastic potential.
In 1950’s Drucker has introduced and developed a proposition of the idea

of a stable plastic material [1]. Drucker stated that the material is stable if the
total work performed by the increment of load through the caused displacement
is non-negative. It is always fulfilled in case of elastic deformation. If the final
stress reaches the limit state determined by the yield condition, then plastic
deformation occurs and the Drucker’s postulate can be written in form of the
following inequality

(1.4) dL =
(
σ− σ0

)
· dεp > 0.

In particular, if the stress increment is infinitesimal, one can write simply:

(1.5) dL = dσ · dεp > 0.

Let us consider that the initial stress state is the limit stress-state. All limit
states, which are given by the yield condition of general form W (σ) = 0 are
represented in the space of principal stresses as a three-dimensional surface.
If no hardening is assumed, then any stress increment vector dσ connects two
points, both of which belong to the surface. In case of an infinitesimal increment
of stress at the limit state this is a tangent vector to the yield surface at the
considered point. It can be shown that at current assumptions on the model of
material, validity of Drucker’s postulate requires that the flow rule (1.3) must
be associated with the limit condition (1.2), namely F (σ) = W (σ) – then the
infinitesimal strain increment vector corresponding to the considered stress in-
crement is represented by a vector perpendicular to the yield surface. In this
case, the Drucker’s postulate (1.5) can be interpreted as a requirement of non-
negativeness of the scalar product of tangent and normal vector at any point
of the yield surface. It is equivalent to the statement that whole surface is non-
concave. If the flow rule is not associated with the yield condition, convexity of
the yield surface is often assumed as well.
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The aim of this paper is to show the application of the general convexity
analysis of three-dimensional surfaces in mechanics of solids. In particular, the
convexity of a new yield surface for isotropic homogeneous solids proposed in
the first part of the paper [3] is analyzed. As a result, a general form of con-
vexity condition for arbitrary chosen form of pressure and Lode angle influence
functions appearing in the proposed yield surface formulation is derived. Those
conditions may be applied as an inequality constraints in an optimization prob-
lem of material identification. Material parameters determined in the process of
fitting the results obtained from the simulation using assumed model to those
obtained from experiment with use of the aforementioned condition, guarantee
convexity of the determined yield surface.
General methodology of the differential geometry in the analysis of convexity

of the given surface S in E3 is as follows:
• Surface parametrization

(1.6) x ∈ S → x = x(α, β).

• Finding the tangent vectors (first derivatives of the position vector with
respect to the chosen surface parameters) at any point

(1.7)

xα =
∂

∂α
x(α, β),

xβ =
∂

∂β
x(α, β).

• Finding the second derivatives of the position vector with respect to the
chosen surface parameters at any point

(1.8)

xαα =
∂2

∂α2
x(α, β),

xββ =
∂2

∂β2
x(α, β),

xαβ =
∂2

∂α∂β
x(α, β).

• Finding the external unit normal vector at any point as a scaled cross-
product of the tangent vectors

(1.9) ν = ± xα × xβ

|xα × xβ|
.
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• Determination of the coefficients of the first fundamental form referring to
the tangent vectors

(1.10)

E = xα · xα,

F = xα · xβ,

G = xβ · xβ .

• Determination of the coefficients of the second fundamental form referring
to the normal vectors and second derivatives of the position vector

(1.11)

e = ν · xαα,

f = ν · xαβ ,

g = ν · xββ.

• Determination of the shape operator and its invariants – Gaussian curva-
ture κG and mean curvature κM – in terms of the coefficients of the first
and the second fundamental form

(1.12)

κG =
eg − f2

EG− F 2
,

κM =
eG− 2fF + gE

2(EG− F 2)
.

• Formulation of the convexity condition in terms of Gaussian and mean
curvatures:

(1.13)
κM < 0,

κG > 0.

2. Convexity condition for proposed surface

2.1. Proposition of yield condition for isotropic bodies

Let us recall a general yield condition discussed in Part I of the paper:

(2.1) W : η̃fΦf + η̃vΦv − 1 = 0,

where Φf – density of energy of distortion, Φv – density of energy of volume
change and η̃f and η̃v are certain stress state dependent functions called influence
functions. Certain assumptions made on those functions, discussed in details in
Part I, enable rewriting (2.1) in the following form:

(2.2) W : ηf (θ)q
2 + ηp(p)− 1 = 0,
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where p – hydrostatic stress, q – deviatoric stress, θ – Lode angle. Parameters
p, q, θ (Haigh-Westergaard coordinates/Lode parameters) are proportional to
cylindrical coordinates (with the specified axis parallel to the p axis) in the space
of principal stresses. There exists the one-to-one relation between “Cartesian”
coordinates and Lode parameters:

(2.3) σi = σi(p, q, θ) ⇒





σ1 = p+

√
2

3
q cos(θ) ,

σ2 = p+

√
2

3
q cos

(
θ − 2π

3

)
,

σ3 = p+

√
2

3
q cos

(
θ +

2π

3

)
,

i = 1, 2, 3

or equivalently:

(2.4)





p =
1

3
(σ1 + σ2 + σ3), p ∈ (−∞;∞),

q =

√
1

3
[(σ3 − σ2)2 + (σ1 − σ3)2 + (σ1 − σ2)2], q > 0,

θ =
1

3
arccos

√
2 (2σ1 − σ2 − σ3) (2σ2 − σ3 − σ1) (2σ3 − σ1 − σ2)

[(σ3 − σ2)2 + (σ1 − σ3)2 + (σ1 − σ2)2]
3/2

= arc tan

√
3(σ2 − σ3)

2σ1 − σ2 − σ3
, θ ∈ (0; 2π).

The difference between the influence functions denoted with and without
tilde, is only in constant scaling parameters which are proportional to the stiff-
ness moduli – shear modulus for η̃f and bulk modulus for η̃v. Further distinction
between η̃v and ηp is that ηp involves already term p2 which is proportional to Φv

– it has no influence on the derivation of the convexity condition since η̃v is other-
wise only pressure-dependent. This simple substitutions simplify the derivation
in great extent.
A general form of convexity condition for any form of influence functions

will be derived in the paper. The derivation will base on classical methods of
differential geometry, namely – convexity analysis of three-dimensional surfaces.

2.2. Surface parametrization

Typical methods mentioned above require calculating both the tangent and
normal vectors of the surface. Tangent vectors can be obtained through differ-
entiating position vector of a point on the surface. Three-dimensional regular
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surface is in fact a two-dimensional differentiable manifold, thus position of any
point belonging to the surface can be explicitly determined by at most two inde-
pendent parameters. To avoid differentiating in curvilinear coordinate system,
we should express the position vector in “Cartesian” coordinates of principal
stresses, however each component of this vector should be expressed by two pa-
rameters determining the surface. Let us assume that those parameters are p
and θ:

(2.5) σi ∈W → σi = σi(p, θ), i = 1, 2, 3.

Then using condition (2.2) and relations (2.4) and remembering that q as the
norm of the stress tensor deviator has to be positive, we can write:

(2.6) q =

√
1− ηp(p)

ηf (θ)
.

Physical interpretation of ηf should be used now – since distortional strains
and shearing stresses which correspond with q are in the greatest extent respon-
sible for material effort, one should expect that ∀θ ηf (θ) > 0 for any given p –
it agrees with intuition and it is confirmed by experiments.
It should be also assumed that ηp(p) 6 1. Indeed, since ηf is assumed to be

positive then any stress state σ corresponding with arbitrarily chosen value of q
is a limit state (it belongs to the limit surface W ) only when ηp(p) 6 1. If there
exists such value of p equal p0 for which ηp(p0) > 1, then there exists no real q
for which Eq. (2.2) is fulfilled and there is no point on the surface corresponding
with such value of parameter p – only part of infinite domain of p ∈ (−∞;∞) is
used to parametrize the surface. Coordinates of any point belonging to W can
be thus written as follows:

(2.7) W :





σ1(p; θ) = p+

√
2

3

√
1− ηp(p)

ηf (θ)
cos(θ) ,

σ2(p; θ) = p+

√
2

3

√
1− ηp(p)

ηf (θ)
cos

(
θ − 2π

3

)
,

σ3(p; θ) = p+

√
2

3

√
1− ηp(p)

ηf (θ)
cos

(
θ +

2π

3

)
.



YIELD CRITERION ACCOUNTING. . . PART II. 289

2.3. First and second derivatives of the position vector, tangent
and normal vectors

Since W ∈ C2, having the position vector expressed by surface parameters,
we can calculate now components of vectors tangent to the surface:

∂σi
∂p

= 1− 1√
6ηf [1− ηp]

∂ηp
∂p

cos(θ + αi),(2.8)

∂σi
∂θ

= −
√

2

3
[1− ηp][ηf ]

3/2 ·
[
ηf sin(θ + αi) +

1

2

∂ηf
∂θ

cos(θ + αi)

]
,(2.9)

where i = 1, 2, 3 and α1 = 0, α2 = −2π/3, α3 = 2π/3. Further derivatives of
position vector are equal

∂2σi
∂p2

= − cos(θ + αi)√
6ηf [1− ηp]3/2

[
1

2

(
∂ηp
∂p

)2

+ [1− ηp]
∂2ηp
∂p2

]
,(2.10)

∂2σi
∂θ2

= −
√

2[1− ηp]

3[ηf ]5
·
[
−ηf

∂ηf
∂θ

sin(θ + αi)(2.11)

+
1

4

(
2ηf

∂2ηf
∂θ2

− 3

(
∂ηf
∂θ

)2

+ 4[ηf ]
2

)
cos(θ + αi)

]
,

∂2σi
∂p∂θ

=
1√

6[ηf ]3[1− ηp]
· ∂ηp
∂p

·
[
ηf sin(θ + αi) +

1

2

∂ηf
∂θ

cos(θ + αi)

]
.(2.12)

Normal to the surface at a fixed point is perpendicular to any tangent vector
at this point (see Fig. 1). Since tangent plane is a two-dimensional one, a basis

Fig. 1. Tangent and normal vectors at the given point of the surface.
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in this space consists of two tangent vectors – i.e. those given by Eqs. (2.8) and
(2.9). So the unit normal vector N is parallel to the cross-product of those two:

(2.13) N =
∇W
|∇W | =

σθ × σp

|σθ × σp|
,

where σX denotes partial derivative of σ with respect to parameter X. The
formula (2.13) specified with use of (2.8) and (2.9) leads after trigonometric
simplification to the following final form. Just to make the notation clear, nu-
merator and denominator are written separately. It is convenient to write the
cross-product in the numerator as a sum of two vectors, one of which is parallel
to the p axis:

(2.14) σθ × σp =
∂ηp
∂p

· 1

2
√
3ηf

[1, 1, 1]

+

√
1− ηp
2[ηf ]3

[(
−∂ηf
∂θ

sin(θ) + 2ηf cos(θ)

)
,

{(√
3ηf +

1

2

∂ηf
∂θ

)
sin(θ) +

(
−ηf +

√
3

2

∂ηf
∂θ

)
cos(θ)

}
,

{(
−
√
3ηf +

1

2

∂ηf
∂θ

)
sin(θ)−

(
ηf +

√
3

2

∂ηf
∂θ

)
cos(θ)

}]
,

(2.15) LN = |σθ × σp|

=
1

η
3/2
f

√√√√3(1− ηp)

[
ηf 2 +

1

4

(
∂ηf
∂θ

)2
]
+

1

4

(
∂ηp
∂p

)2

ηf = LN > 0.

Please note that sequence of tangent vectors in the above vector cross-
product influences the orientation of resultant normal vector (cross-product is
bilinear skew-symmetric operation) which has significant role in convexity condi-
tion formulation. Interior of the yield surface (area of safe stress states) should
be determined. The (0, 0, 0) point should always be in the surface’s interior.
Let’s check the orientation of a normal vector given by (2.13). At any point in
the stress space (not only at those belonging to the surface), local orthonormal
basis (holonomic basis respective for (p, q, θ) coordinates – see Fig. 2) can be
determined, namely, these are normalized derivatives of a position vector given
by (2.3) (not to be mistaken with position vector of a point belonging to the
surface given by (2.7)) with respect to the corresponding parameter:
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(2.16)

ep =
1√
3
[1, 1, 1],

eq =

√
2

3

[
cos (θ) , cos

(
θ − 2π

3

)
, cos

(
θ +

2π

3

)]
,

eθ =

√
2

3

[
− sin (θ) , − sin

(
θ − 2π

3

)
, − sin

(
θ +

2π

3

)]
,

eK · eL = δKL, K,L = p, q, θ.

Fig. 2. Local holonomic basis respective for the Lode parameters p, q, θ.

The orientation of those vectors is already given and shown in the Fig. 2 and
it is a consequence of definition (2.3) – ep is oriented along the hydrostatic stress
axis pointing positive values of p – eq is oriented away from (0, 0, 0) – and eθ is
oriented counter-clockwise when looking at any octahedral plane (perpendicular
to p axis) from the side of greater values of p. Due to the same reasons for which
ηf was assumed to be positive valued, we can consider that an external normal
is the one which q-component is oriented the same way as eq – safe stress states
(interior of yield surface) are close to (0, 0, 0) point or – more generally speaking
– the safer is the stress state, the smaller should be its deviatoric component
(q → 0) and the closer should it be placed to the p axis. In such situation
N · eq > 0 should be fulfilled. Indeed:

(2.17) N · eq =
√
3

LN

√
(1− ηp)

ηf
,

which is always positive due to the assumed 1 > ηp and positiveness of LN , ηf ,
so N defined by (2.13) is an external normal.
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2.4. First and second fundamental form, shape operator

Once the components of the normal vector and the tangent ones and their
derivatives are calculated, one can obtain coefficients of the first and the sec-
ond fundamental form and finally the values of curvatures which allow us to
determine the convexity condition – typical methods of differential geometry
shown e.g. in [2] will be used. The first fundamental form I is an inner (scalar)
product of any two tangent vectors at a given point. As it was said before,
tangent plane is a two-dimensional space in which vectors σp and σθ form
a basis (not necessarily an orthogonal or normalized one), so any two tan-
gent vectors can be expressed as a linear combination of the two mentioned:
v1 = v1pσp + v1θσθv2 = v2pσp + v2θσθ. Their scalar product is equal

(2.18) I(v1,v2) = v1 · v2 = v1pv2p(σp · σp) + (v1pv2θ + v1θv2p)(σp · σθ)

+ v1θv2θ(σθ · σθ),

what can be rewritten in such matrix form:

(2.19) I(v1,v2) = v1 · v2 = v1 · I · v2 =

[
v1p
v1θ

]T
·
[
E F
F G

]
·
[
v2p
v2θ

]
.

Symmetric operator I can be considered as a metric tensor in the space of
tangent vectors. Arc length of an infinitesimal section of a curve belonging to
the surface is given as follows:

(2.20) ds2 = Edp2 + 2Fdpdθ +Gdθ2.

Coefficients of the first fundamental form are equal to

(2.21)

E = |σp|2 = σp · σp = 3 +

(
∂ηf
∂p

)2

· 1

3ηf (1− ηp)
,

F = σp · σθ =
1

4(ηf )2
· ∂ηp
∂p

· ∂ηf
∂θ

,

G = |σθ|2 = σθ · σθ = (1− ηp)

[
1

ηf
+

1

4(ηf )3

(
∂ηf
∂θ

)2
]
.

Second fundamental form, just as the first one, is a bilinear form on tangent
vectors at a given point of the surface defined as follows:

(2.22) II(v1,v2) = S(v1) · v2,
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where S is shape operator defined as:

(2.23) S =
(
I II−1

)T
=

[
S11 S12
S21 S22

]
: S(v) = −Nv = −∇N · v.

Shape operator (Weingarten map, second fundamental tensor) describes varia-
tion of a unit normal of the surface with the change of direction of the tangent
vector v. Eigenvalues of the shape operator are equal principal (extremal) cur-
vatures of the surface at a given point, while the corresponding eigenvectors
indicate the directions of those curvatures. Invariants of the shape operator –
determinant and half of the trace – are equal Gaussian and mean curvatures
respectively. Second fundamental form II can be written as:

(2.24) II(v1,v2) = (−Nv1) · v2

= −(v1pNp + v1θNθ) · (v2pσp + v2θσθ) = −v1pv2p(Np · σp)

− [v1pv2θ(Np · σθ) + v1θv2p(Nθ · σp)]− v1θv2θ(Nθ · σθ)

or it can rewritten in the following matrix form:

(2.25) II(v1 · v2) = v1 · II · v2 =

[
v1p
v1θ

]T
·
[
e f
f g

]
·
[
v2p
v2θ

]
,

where the coefficients of the second fundamental form are given by following
relations:

(2.26)

e=−Np · σp = N · σpp = −
√
3

2LNηf

[
∂2ηp
∂p2

+
1

2

(
∂ηp
∂p

)2 1

(1− ηp)

]
,

f=−Np · σθ = −Nθ · σp = N · σpθ = N · σθp = 0,

g=−Nθ ·σθ = N·σθθ = −
√
3(1−ηp)

4LN [ηf ]3

[
4(ηf )

2+2ηf
∂2ηf
∂θ2

−
(
∂ηf
∂θ

)2
]
.

Components of S can be expressed in terms of coefficients of the first and
second fundamental form (Weingarten equations):

(2.27)

S11 =
eG− fF

EG− F 2
, S12 =

fG− gF

EG− F 2
,

S21 =
fE − eF

EG− F 2
, S22 =

gE − fF

EG− F 2
.
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2.5. Invariants of S, principal (extremal),
mean and Gaussian curvatures

Since components of S depend on the quantities chosen for parametriza-
tion, they are not as important as invariants of S – its eigenvalues (principal
curvatures – extremal of all possible values of curvature), its trace (which is
proportional to the mean of the principal curvatures – mean curvature κM )
and its determinant (product of principal curvatures – Gaussian curvature κG).
Eigenvalues of S can be found from the characteristic polynomial of S:

(2.28) det(S− κI) = κ2 − I1(S)κ + I2(S) = 0

or

(2.29) κ2 − 2κMκ+ κG = 0,

where

(2.30)

κM =
1

2
I1(S) =

1

2
tr(S) =

1

2
I · (II)−1 =

1

2
(S11 + S22)

=
eG− 2fF + gE

2(EG − F 2)
– mean curvature,

κG = I2(S) = det(S) =
det(I)

det(II)
= S11 · S22

=
eg − f2

EG− F 2
– Gaussian curvature.

Values of mean and Gaussian curvatures:

(2.31) κM = −
√
3

4LNηf

[
3(1− ηp)

((
∂ηf
∂θ

)2

+ 4(ηf )2

)
+ ηf

(
∂ηp
∂p

)2
]

·
[
6(1− ηp)ηf

(
2ηf

∂2ηf
∂θ2

−
(
∂ηf
∂θ

)2

+ 4(ηf )
2

)

+ (1− ηp)
∂2ηp
∂p2

((
∂ηf
∂θ

)2

+ 4(ηf )
2

)
+ ηf

(
∂ηp
∂p

)2(∂2ηf
∂θ2

+ 4ηf

)]
,

(2.32) κG =

3

[
2(1− ηp)

∂2ηp
∂p2

+

(
∂ηp
∂p

)2
]
·
[
2ηf

∂2ηf
∂θ2

−
(
∂ηf
∂θ

)2

+ 4(ηf )
2

]

4LNηf

[
3(1 − ηp)

((
∂ηf
∂θ

)2

+ 4(ηf )2

)
+

(
∂ηp
∂p

)2

ηf

] .



YIELD CRITERION ACCOUNTING. . . PART II. 295

When there is a need of calculating extremal (the greatest and the smallest)
values of curvature of all curvatures of any arbitrary chosen curves containing
the given point and belonging to the surface, principal curvatures can be de-
rived from mean and Gaussian curvatures. Since they are roots of characteristic
polynomial, they are equal:

(2.33) κ1/2 = κM ±
√
κ2M + κ2G.

These quantities are rather complex and it seems that writing of the full
expression for principal curvatures for this very general case is to some extent
useless – they can be calculated for certain forms of influence functions. Using
numerical computations makes the problem even easier.

2.6. Convexity condition

If the yield surface is oriented by the aforementioned unit normal N pointing
exterior of the surface, then the surface will be convex (non-concave) if and only
if all possible curvatures of the curves belonging to it are negative (non-positive).
Since principal curvatures κ1, κ2 (as the eigenvalues of S) are extremal (maximal
and minimal), the values of curvature at given point then all curvatures will be
negative if both of the principal ones are negative:

(2.34)
{
κ1 < 0
κ2 < 0

⇒
{
κ1 + κ2 < 0
κ1 · κ2 > 0

⇒
{
κM < 0
κG > 0

.

Finally we obtain:

(2.35)

[
6ηf

(
2ηf

∂2ηf
∂θ2

−
(
∂ηf
∂θ

)2

+ 4(ηf )
2

)

+
∂2ηp
∂p2

((
∂ηf
∂θ

)2

+ 4(ηf )
2

)
+

ηf
(1−ηp)

(
∂ηp
∂p

)2(∂2ηf
∂θ2

+ 4ηf

)]
>0,

[
2(1− ηp)

∂2ηp
∂p2

+

(
∂ηp
∂p

)2
]
·
[
2ηf

∂2ηf
∂θ2

−
(
∂ηf
∂θ

)2

+ 4(ηf )
2

]
> 0.

These inequalities are general conditions which have to be fulfilled by the
chosen influence functions, so that yield surface determined by them was convex.
Since the yield condition (2.2) is formulated in a very general way, it allows us
to use above conditions in the most cases of commonly used yield conditions
and also to specify any new surface, since the form of influence functions can
be chosen in an almost arbitrary way. Numerical analysis of positiveness of the
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above expressions with respect to all constant parameters of influence functions,
defines a domain of values of those parameters for which specified yield surface
is convex (see similar analysis performed by Raniecki and Mróz [4]).
As the process of material identification (determining functions and parame-

ters describing properly material’s behavior) is often considered as an optimiza-
tion problem of fitting results of simulation using the assumed model to the data
obtained from experiments (for certain objective function), conditions given by
inequalities (2.35) can be used in the optimization process as the inequality
constraints that have to be fulfilled by resultant optimal solution.

2.7. Pressure insensitive materials

Considering that the condition (2.2) describes pressure insensitive materials
– what means that ηp(p) = const. and all its derivatives are equal 0 – we can
see that κG = 0. Resultant surface is a cylindrical shaped surface with its axis
parallel to p-axis and its cross-section deformed by ηf (θ) influence function.
Convexity condition is equivalent to the statement that mean curvature κM < 0:

(2.36) 2ηf
∂2ηf
∂θ2

−
(
∂ηf
∂θ

)2

+ 4(ηf )
2 > 0.

Specific form of yield condition for pressure insensitive materials was considered
by Raniecki and Mróz in [4], namely qf(y) − 1 = 0 where y = cos(3θ).
We can obtain it by substituting ηf (θ) = [f(cos(3θ))]2 in (2.36). After proper
differentiation we obtain:

(2.37) f ′′(1− y)− f ′y +
f

9
> 0,

which is the form of convexity condition precisely analyzed by Raniecki and
Mróz in case of certain two-parameter power and exponential influence func-
tions ηf .
For pressure insensitive materials it is common that yield condition is defined

only on the octahedral plane thus the surface convexity condition requires only
convexity of a function given on that plane. Since in many cases polar coordi-
nates are convenient in use, sometimes yield condition has the form: q = r(θ),
which can be obtained by substituting ηf (θ) = [r(θ)]−2 into (2.36). After proper
differentiation we obtain:

(2.38) κ =
r2 + 2(r′)2 − rr′′

[(r′)2 + r2]3/2
> 0,

which is exactly the same as the classical expression for curvature of a function
given in polar coordinates.
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3. Summary

Three-dimensional surface given by an equation in Haigh-Westergaard coor-
dinates/Lode parameters (general form of yield condition for isotropic bodies)
was considered. Condition of its convexity (being a consequence of Drucker pos-
tulate) was analyzed. Proper inequalities were formulated for arbitrary forms
of influence functions using classical methods of differential geometry. Various
forms of convexity condition were proposed depending on yield condition for-
mulation and on various assumptions on properties of the influence function.
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