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In this paper, two inequality relations are proven for the torsional rigidity of orthotropic
elastic solid cross sections. By using the derived inequality relations, lower and upper bounds
can be obtained for the torsional rigidity. All results of the paper follow from the Saint-Venant
theory of uniform torsion. The presented bounding formulae are based on the mean value
theorem of integral calculus.
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1. Introduction

This paper formulates two inequality relations for the torsional rigidity of
elastic homogeneous orthotropic solid cross section. The presented inequality
relations can be used to estimate the torsional rigidity, and they are differ-
ent from the bounding formulas of torsional rigidity obtained by applying the
minimum principles of the linear theory of elasticity [1–4]. They are based on
the mean-value theorem of integral calculus,and these types of inequalities are
called Barta’s inequalities [5–8]. Barta’s inequalities are very handsome tools
for constructing rough bounds for the torsional rigidity and for eigenvalues. Al-
though they have been used and refined for numerical applications [5, 6], they
are mainly of theoretical interest. Barta extended his method of estimating tor-
sional rigidity to multi-cell thin-walled cross sections by using the properties of
the weighted arithmetic mean of a finite sum [9, 10]. In this paper, Barta-type
inequalities will be derived for the torsional rigidity of orthotropic elastic solid
cross sections. Four examples illustrate the application of the proven inequality
relations.
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2. Saint-Venant torsion of orthotropic solid cross section

Figure 1 shows the cross section of the orthotropic beam, which is denoted
by A. The boundary curve of A is indicated by ∂A and the arc-length defined on
∂A is denoted by s, t = t(s) and n = n(s) represent the unit tangential and unit
normal vectors of the boundary contour ∂A. Unit vectors in x and y directions
are ex and ey and we have (Fig. 1)

t =
dr
ds

= txex + tyey =
dx
ds

ex +
dy
ds

ey,(2.1)

n = nxex + nyey =
dy
ds

ex −
dx
ds

ey.(2.2)

Here, r(s) = x(s)ex + y(s)ey is the position vector of the boundary point P
(Fig. 1). The shear moduli of orthotropic material in xz and yz directions are
denoted by Gx and Gy. U = U(x, y) is the Prandtl stress function of the consid-
ered orthotropic cross section. Here, we have U = U(x, y) as the solution of the
following Dirichlet-type boundary value problem [1–4]:

1

Gy

∂2U

∂x2
+

1

Gx

∂2U

∂y2
= −2, (x, y) ∈ A,(2.3)

U(x, y) = 0, (x, y) ∈ ∂A.(2.4)

Fig. 1. Solid orthotropic cross section.

The shear stress vector τz in terms of stress function U = U(x, y) can be
expressed as [1–4]

(2.5) τz = τxzex + τyzey = ϑ

(
∂U

∂y
ex −

∂U

∂x
ey

)
,
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where ϑ is the rate of twist. The connection between the applied torque T and
ϑ is as follows:

(2.6) ϑ =
T

S

and we have the following formula for the torsional rigidity S:

(2.7) S = 2

ˆ

A

U(x, y) dA =

ˆ

A

[
1

Gy

(
∂U

∂x

)2

+
1

Gx

(
∂U

∂y

)2
]
dA.

At first, we prove that

(2.8) U(x, y) ≥ 0, (x, y) ∈ A = A ∪ ∂A.

Let

(2.9) X = x 4

√
Gy
Gx

, Y = y 4

√
Gx
Gy

, (x, y) ∈ A.

Clearly, if (x, y) ∈ A, then

(2.10) (X,Y ) ∈ a =

{
X,Y |X = x 4

√
Gy
Gx

, Y = y 4

√
Gx
Gy

}
.

A simple computation based on Eqs (2.3), (2.4) and (2.9) gives

(2.11)
∂2u

∂X2
+
∂2u

∂Y 2
= −2

√
GxGy, (X,Y ) ∈ a,

(2.12)

u(X,Y ) = 0, (X,Y ) ∈ ∂a,

(X,Y ) ∈ ∂a =

{
X,Y |X = x 4

√
Gy
Gx

, Y = y 4

√
Gx
Gy

}
,

in Eq. (2.12), (x, y) ∈ ∂A and (X,Y ) ∈ ∂a. The connection of the functions
U(x, y), (x, y) ∈ A, and u(X,Y ), (X,Y ) ∈ a, is given by the following equation:

(2.13) U(x, y) = U

(
X 4

√
Gx
Gy

, Y 4

√
Gy
Gx

)
= u (X,Y ) .

From Eqs (2.11)–(2.13) it follows that according to the properties of the
Prandtl stress function of the homogeneous isotropic solid cross section we have

(2.14) u(X,Y ) ≥ 0, (X,Y ) ∈ a ∪ ∂a.
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Since U(x, y) ≥ 0 in A and U(x, y) = 0 on ∂A, we have the derivative of the
continuous function U = U(x, y) in the direction of n is non-positive, that is,

(2.15)
∂U

∂n
=
∂U

∂x
nx +

∂U

∂y
ny ≤ 0, (x, y) ∈ ∂A.

Later on, we will use the following equations

(2.16)
ˆ

A

[
∂

∂x

(
1

Gy

∂U

∂x

)
+

∂

∂y

(
1

Gx

∂U

∂y

)]
dA

=

ˆ

∂A

(
1

Gy

∂U

∂x
nx +

1

Gx

∂U

∂y
ny

)
ds = −2A,

(2.17)
nx
Gy

∂U

∂x
+
ny
Gx

∂U

∂y
=

(
n2
x

Gy
+
n2
y

Gx

)
∂U

∂n
≤ 0, (x, y) ∈ ∂A.

The validity of Eq. (2.17) follows from the system of Eqs (2.18) and (2.19):

τsz
ϑ

= −
(
∂U

∂x
nx +

∂U

∂y
ny

)
= −∂U

∂n
,(2.18)

τnz
ϑ

= −∂U
∂x

ny +
∂U

∂y
nx = 0.(2.19)

The solution of the system of Eqs (2.18) and (2.19) for ∂U
∂x and ∂U

∂y is as
follows:

(2.20)
∂U

∂x
=
∂U

∂n
nx,

∂U

∂y
=
∂U

∂n
ny.

Substitution of Eqs (2.20)1, 2 into the left-hand side of Eq. (2.17) gives

(2.21)
nx
Gy

∂U

∂x
+
ny
Gx

∂U

∂y
≤ 0, (x, y) ∈ ∂A.

3. Barta-type inequality for the torsional rigidity

We start with the following equation:

(3.1)
(

1

Gy

∂2U

∂x2
+

1

Gx

∂2U

∂y2

)
V = −2V, (x, y) ∈ A,
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where V = V (x, y) can be differentiated at least twice in A and it is continuous
in A = A ∪ ∂A, otherwise V = V (x, y) is an arbitrary function of x and y. The
left-hand side of Eq. (3.1) can be reformulated as:

(3.2) V
∂

∂x

(
1

Gy

∂U

∂x

)
+ V

∂

∂y

(
1

Gx

∂U

∂y

)
=

∂

∂x

(
V

Gy

∂U

∂x

)
+

∂

∂y

(
V

Gx

∂U

∂y

)
− 1

Gy

∂V

∂x

∂U

∂x
− 1

Gx

∂V

∂y

∂U

∂y

=
∂

∂x

(
V

Gy

∂U

∂x

)
+

∂

∂y

(
V

Gx

∂U

∂y

)
− ∂

∂x

(
U

Gy

∂V

∂x

)
− ∂

∂y

(
U

Gx

∂V

∂y

)
+

(
1

Gy

∂2V

∂x2
+

1

Gx

∂2V

∂y2

)
U.

Combining Eq. (3.1) with Eq. (3.2) gives

(3.3) 2

ˆ

A

V dA = 2

ˆ

A

F (x, y)U dA−
ˆ

∂A

(
nx
Gy

∂U

∂x
+
ny
Gx

∂U

∂y

)
V ds,

where

(3.4) F (x, y) = −1

2

(
1

Gy

∂2V

∂x2
+

1

Gx

∂2V

∂y2

)
.

Here, we have used

(3.5) U(x, y) = 0, (x, y) ∈ ∂A.

Since

(3.6) U(x, y) ≥ 0 (x, y) ∈ A and −
(
nx
Gy

∂U

∂x
+
ny
Gx

∂U

∂y

)
≤ 0, (x, y) ∈ ∂A,

from Eq. (3.3), it follows that

2

ˆ

A

V dA ≤ F S + 2 v A,(3.7)

2

ˆ

A

V dA ≥ F S + 2 v A,(3.8)

where

F = supF (x, y), (x, y) ∈ A ∪ ∂A, F = inf F (x, y), (x, y) ∈ A ∪ ∂A,(3.9)

v = supV (x, y), (x, y) ∈ ∂A, v = inf V (x, y), (x, y) ∈ ∂A.(3.10)
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Here, we note, if

(3.11) F = F = F0 6= 0, and V (x, y) = 0, (x, y) = 0,

then

(3.12) S =
2

F0

ˆ

A

V dA.

It is very easy to show that if

(3.13) F = F = 0 and V (x, y) = 0, (x, y) ∈ ∂A,

then we have

(3.14) V (x, y) ≡ 0, (x, y) ∈ A ∪ ∂A.

4. Examples

4.1. Cross section with straight line and hyperbola arc boundary curves

Figure 2 shows a cross section bordered by the straight line x = b, and
a hyperbola arc defined by the formula

(4.1) x2 − p2y2 − a2 = 0.

Fig. 2. Cross section bordered by a straight line and a hyperbola arc.

In Eq. (4.1), p is a parameter whose value determines the shape of the hy-
perbola arc. Let

(4.2) V (x, y) = (x2 − p2y2 − a2)(b− x), b > a.
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In this case, we have

F (x, y) = −1

2

(
1

Gy

∂2V

∂x2
+

1

Gx

∂2V

∂y2

)
=

(
3

Gy
− p2

Gx

)
x+ b

(
p2

Gx
− 1

Gy

)
,(4.3)

V (x, y) = 0, (x, y) ∈ ∂A.(4.4)

From Eq. (4.4), it follows that if

(4.5) Gy =
3

p2
Gx,

then we have

(4.6) F = F = F0 =
2

3

p2

Gx
b2.

Application of formula (3.12) yields the following result for the torsional
rigidity of the considered orthotropic cross section:

S =
Gx

10p3b
(R1 −R2),(4.7)

R1 = 10b2
√

(b2 − a2)3 + 15a4b ln(b+
√
b2 − a2),(4.8)

R2 = 8
√

(b2 − a2)5 + 15ba4 ln(a) + 15b2a2
√
b2 − a2.(4.9)

We note that the formula (4.7) for the case a = 0 gives the torsional rigidity
of an isosceles triangle that is bordered by the two asymptotes of the hyperbola
arc shown in Fig. 2 and by the straight line x = b. From formula (4.7), we
obtain the following result for the torsional rigidity of the anisotropic isosceles
orthotropic cross section:

(4.10) S =
1

5
Gx

b4

p
if Gy =

3

p2
Gx.

4.2. Anisotropic isosceles right triangle cross section

Figure 3 illustrates the considered isosceles triangle cross section. The follow-
ing numerical data are used:

(4.11)
Gx = 8 · 108 Pa, Gy = 25 · 108 Pa,

a = 0.1 m, A = a2 = 0.01 m2.
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Fig. 3. Anisotropic isosceles triangle cross section.

Let

(4.12) V (x, y) = y2x− x3 − ay2 + ax2.

This function has zero value on the boundary of the considered isosceles right
triangle cross section. We have

(4.13)

F = 8.5 · 10−11 m3

N
, F = 8 · 10−11 m3

N
,

2

ˆ

A

V dA = 1.3333333 · 10−6 m5.

Substituting the numerical results given by Eq. (4.12) into inequality relations
(3.7) and (3.8), the following upper and lower bounds can be derived for the
torsional rigidity:

(4.14) S < 16666.666 N ·m2, S > 15686.27451 N ·m2.

4.3. Cross section with straight line and parabola arc boundary curves

Figure 4 shows an orthotropic cross section that is bordered by the straight
line y = 0 and the parabola arc defined by the formula

(4.15)
y

a
− x

b

(
1− x

b

)
= 0, 0 ≤ x ≤ b.

Fig. 4. A cross section bordered by a straight line and a parabola arc.
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In this example, the following numerical data are used:

Gx = 0.9 · 105 N/mm2, Gy = 0.7 · 105 N/mm2,

a = 6 mm, b = 60 mm.

Let

(4.16) V = V (x, y) = y
(y
a
− x

b

(
1− x

b

))
.

This function satisfies the following homogeneous boundary condition:

(4.17) V (x, y) = 0, (x, y) ∈ ∂A.

In this case, we have

(4.18)

F = −1.8518519 · 10−6 mm
N

, F = −1.857804 · 10−6 mm
N

,

2

ˆ

A

V dA = −5.142857143 mm3.

By substituing the numerical results given by Eq. (4.17) into bounding for-
mulae (3.7) and (3.8), we obtain the following upper and lower bounds for the
torsional rigidity:

(4.19) S < 2.7771429 · 106 N ·mm2, S > 2.7682449 · 106 N ·mm2.

We can get another lower bound for the torsional rigidity, which can be
derived by applying the minimum principle of the complementary energy of
elasticity [1–3]

(4.20) S ≥ 4

ˆ

A

U dA−
ˆ

A

[
1

Gy

(
∂U

∂x

)2

+
1

Gx

(
∂U

∂y

)2
]
dA,

where the statically admissible Prandtl stress function U = U(x, y) satisfies the
following boundary condition

(4.21) U(x, y) = 0, (x, y) ∈ ∂A.

Let

(4.22) U = Cy
(y
a
− x

b

(
1− x

b

))
.
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A simple calculation shows that the inequality relation (4.20) gives the sharpest
lower bound for the torsional rigidity if

(4.23) C = −5.392296728 · 105 N/mm.

In this case, we have

(4.24) S ≥ 2.7731812 · 106 N ·mm2.

This lower bound is smaller than the upper bound given by inequality (4.19)1.
This fact supports the validity and applicability of the proven bounding formulae
(3.7) and (3.8).

5. Conclusions

Barta-type inequality relation was proven for the torsional rigidity of ho-
mogeneous orthotropic elastic beams with solid cross sections. The presented
inequality can be used to estimate the torsional rigidity. Some properties of the
Prandtl stress function for the solid orthotropic cross section were also proven.
Examples illustrate the applications of the presented bounding formulae. In the
first example, the exact value of the torsional rigidity was obtained.
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