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In the paper a new proposition of an energy-based hypothesis of material effort is intro-
duced. It is based on the concept of influence functions introduced by Burzyński [3] and
on the concept of decomposition of elastic energy density introduced by Rychlewski [18].
A new proposition enables description of a wide class of linearly elastic materials of arbitrary
symmetry exhibiting strength differential effect.
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1. Introduction

The aim of the paper is to introduce a new proposition of a limit condition
for anisotropic bodies. In Sec. 2 the foundations of the energy-based hypothesis
of material effort proposed by Rychlewski is briefly discussed, while the further
parts of the paper are devoted to presentation of the own proposition of the
authors. In Sec. 3 a new proposition of the energy-based hypothesis of material
effort is presented. The introduction of the influence functions plays essential
role by accounting for the assymetry of elastic range. Then the detail discussion
of failure criteria specified for some chosen elastic symmetries is provided. The
important from practical point of view case of plane orthotropy is studied and
the possibilities of specification of the yield criterion in this case are discussed.
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Finally, the case of isotropic solid is studied. The specification of influence func-
tions reveals that the earlier discussed case of the criterion accounting for the
influence of the Lode angle or in particular the classical Burzyński criterion can
be obtained.
Our approach to the problem of the formulation of a limit condition yields

from the energy-based concepts of Burzyński [3] and Rychlewski [18]. It dis-
tinguishes, however in accounting for the asymmetry of the elastic range, which
manifests itself in the difference of the values of yield strength in tension and
compression performed with use of the specimen cut out of anisotropic material
in any direction. This is the so-called strength differential effect, discussed e.g. by
Drucker [4] or Spitzig, Sober and Richmond [20]. Among other earlier for-
mulations of the limit criteria accounting for anisotropy (Mises [11], Hill [7]),
strength differential effect (Drucker–Prager [5], Bigoni–Piccolroaz [2])
or both of those features (Hoffman [8], Tsai–Wu [24], Theocaris [23]) the
criteria derived from the hypothesis that the measure of material effort is the
density of elastic energy accumulated in an anisotropic solid have the following
advantages:

• physical interpretation as a combination of energy densities connected with
certain energetically independent stress states,

• general treatment of the linear elastic anisotropy due to application of the
spectral decomposition of elasticity tensors.

2. Theoretical foundations of energy-based approach

In the linear theory of elasticity an important role is played by certain fourth
order tensors, namely compliance tensor C, stiffness tensor S and limit state
tensor H. First two tensors appear in the generalized Hooke’s law as a lin-
ear operators mapping the space of symmetric second order tensors into itself
S → S

(2.1)





σ = S · ε
ε = C · σ
C : S = S : C = IS

⇒





σij = Sijklεkl
εij = Cijklσkl

CijklSklmn = SijklCklmn =
1

2
(δimδjn + δinδjm) ,

where σ is the Cauchy stress tensor, ε is the symmetric part of the gradient of
small displacements (infinitesimal strain tensor) and IS is an identity operator
in the space of symmetric second order tensors. The limit state tensorH appears
in the quadratic form of a limit state condition, which constitutes a constraint
on the range of stresses for which the Hooke’s law is valid

(2.2) σ ·H · σ ≤ 1.
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If we consider Levy-Mises flow rule associated with the limit condition of
the type as shown above then the constitutive relations between an increment
of plastic strain and stress state is expressed by the limit state tensor H which
acts as an linear operator on S :

(2.3) ε̇
p = λ̇H · σ.

Finally the stiffness and compliance tensors appear in the expression for the
elastic energy density as a quadratic forms

(2.4) Φ =
1

2
σ ·C · σ =

1

2
ε · S · ε.

One can see that each of these three tensors C,S and H can be treated both
as a linear operator and a quadratic form. Unless none of the so-called “locked”
stress or strain states as well as the safe stress states are taken into consideration
all quadratic forms σ ·C ·σ, ε ·S ·ε, σ ·H ·σ are positive definite and symmetric.
Tensors C,S andH have internal symmetries characterized by the symmetry

group

(2.5) σ̃4 = {〈1, 2, 3, 4〉, 〈2, 1, 3, 4〉, 〈1, 2, 4, 3〉, 〈3, 4, 1, 2〉} .

which ensures existance of real eigenvalues of those operators. According to the
classical theorem on the spectral decomposition of a linear operator each of the
considered fourth rank tensors can be represented in the following form [17, 19]:

(2.6)

S=λ1P1+λ2P2+...+λρPρ=λI(ωI ⊗ωI)+...+λV I(ωVI ⊗ ωVI),

C=
1

λ1
P1+

1

λ2
P2+...+

1

λρ
Pρ=

1

λI
(ωI ⊗ωI)+...+

1

λV I
(ωVI ⊗ωVI),

H=
1

h1
R1+

1

h2
R2+...+

1

hχ
Rχ=

1

hI
(hI ⊗ hI)+...+

1

hV I
(hVI ⊗ hVI),

ρ, χ ≤ 6,

where ωK and hK are the second order tensors representating the eigenstates
corresponding with the K-th eigenvalue of the considered operators and PK
and RK are orthogonal projectors on the corresponding eigensubspaces. The
expression of the linear operators C, S, H as a linear combination of orthogonal
projectors is unique. It is not so in case of the decomposition into the scaled
sum of dyads of the eigenstates. In case of multidimensional eigensubspaces the
basis of the eigenstates in such subspace can be done arbitrary in an infinite
number of ways.
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If the elasticity tensors and the limit state tensor are coaxial then they have
the same eigensubspaces and thus the same orthogonal projectors, however even
then they may still have different eigenvalues. If any eigensubspace of one of
those tensors is not an eigensubspace of the other one but it is still a direct
sum of eigenspaces of this second tensor then we call those tensors as being
compatible. Even in case when elasticity tensors and limit state tensor are not
coaxial but they are still compatible, there exists such a basis in which each of
those tensors can be expressed as a linear combination of dyads of the same set
of eigenstates. It can be also shown that if two tensors are compatible and all
of their eigensubspaces are one-dimensional, then they are coaxial.
According to the theorems of algebra for any quadratic form, there exists

a bilinear form which is polar to the considered quadratic form [6]. The linear
space of the symmetric second order tensors becomes an euclidean space when
a scalar product is defined in it. Rychlewski [18] has used the theorem on the
simultaneous reduction of two quadratic forms σ ·C · σ and σ ·H · σ to their
canonical forms, assuming that the scalar product is defined as:

(2.7)
σ1 • σ2 = σ1 ·C · σ2 = σ2 ·C · σ1

σ1⊥̇σ2 ⇔ σ1 • σ2 = 0

to formulate the following theorem:

Theorem 1: Rychlewski’s theorem [18].
For every elastic material defined by its compliance tensor C and limit state

tensor H, there exist exactly one energetically orthogonal decomposition of the
linear space of symmetric second order tensors S :

(2.8)
S = H1 ⊕ ...⊕ Hχ, χ ≤ 6,

Hα⊥̇Hβ for α 6= β

and exactly one set of pairwise unequal constants

(2.9) h1, ..., hχ, hα 6= hβ for α 6= β

such that, for an arbitrary stress state σ

(2.10) σ = σ1 + ...+ σχ, σα ∈ Hα

the measure of material effort given by formula (2.2) is equal

(2.11) σHσ =
1

h1
Φ(σ1) + ...+

1

hχ
Φ(σχ)
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where

(2.12) Φ(σ1) + ...+ Φ(σχ) = Φ(σ) =
1

2
σ ·C · σ

is the total elastic energy density.
Let us remind that none of the so-called “locked” stress or strain states

(corresponding with the zero Kelvin modulus) are allowed in this case since the
operator used for the definition of the scalar product must be positive definite.
We will call the limit condition of form (2.11) the Rychlewski limit condition. If
only a single stress state component σα (from the decomposition (2.10)) occurs
in the limit condition (2.11) then it can be rewritten in the following form:

(2.13) Φ(σα) = hα.

The quantity hα can be interpreted as a limit value of the energy density corre-
sponding to the specified stress state σα.
Rychlewski has interpreted the scalar product defined in (2.7) in terms of

energy - one can note that in case of any two stress states which are orthogonal
in the sense of the considered scalar product, the work performed by one of the
stress state through strains respective for the other one are equal zero:

(2.14) σ1 • σ2 = σ1 ·C · σ2︸ ︷︷ ︸
ε2

= 0 ⇒ L =
1

2
ε1 · σ2 =

1

2
σ1 · ε2 = 0.

In general, tensors C and H are independent – in [9] an energy-based limit
condition for solids of cubic elasticity and orthotropic limit state is discussed.
If C and H are coaxial (they have the same eigensubspaces) then the decom-
position of S into eigensubspaces of each of those tensors is the same in both
cases and the stress states σα are the eigenstates of the stiffness and compliance
tensors as well as of the limit state tensor. Then decomposition of elastic energy
density (2.12) takes the following form:

(2.15) Φ(σ) = Φ(σ1) + ...+ Φ(σρ) ρ ≤ 6,

where stress states σ1, ...,σρ are both orthogonal and energetically orthogonal.
It is the only such decomposition of the energy density in which mutually en-
ergetically orthogonal states are also mutually orthogonal in sense of classical
definition of the scalar product. We call it the main decomposition of the elastic
energy density. Examples of the limit criteria based on the main decomposition
of elastic energy density for cubic symmetry and transversal isotropy can be
found in [12].
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3. New proposition of an energy-based hypothesis
of material effort

Authors’ proposition of a limit condition for pressure-sensitive materials of
arbitrary symmetry, exhibiting strength differential effect will be now intro-
duced. Making use of the innovative idea of Burzyński we can modify Rych-
lewski’s yield condition (2.11) in a way similar to the one in which Burzyński
modified classical yield condition by Maxwell–Huber [18], namely by taking
into account only parts of the specified energy densities, defining their contri-
bution to the total measure of material effort by multiplying their values by a
proper functions of the stress state in the corresponding subspace – let’s call
them influence functions ηα

(3.1) η1Φ(σ1) + ...+ ηχΦ(σχ) = 1, σα ∈ Hα, χ ≤ 6,

where

(3.2) Φ(σ1) + ...+ Φ(σχ) = Φ

is the total elastic energy density and

(3.3)
σ1 + ...+ σχ = σ, σα ∈ Hα,

H1 ⊕ ...⊕ Hχ = S

is any decomposition of the strain and stress state space S into direct sum
of mutually energetically orthogonal tensor subspaces Hα. The introduced in-
fluence functions should be interpreted as a scaling parameters (weights) de-
scribing the contribution of each term of energy density into the measure of
material effort according to the current stress state. The clue difference between
the newly introduced proposition and the Rychlewski’s criterion (2.11) is that
the coefficients of the linear combination of the energy densities are
not constant (only material dependent) parameters but they are also
functions of the current stress state. In this way they take into account
various modes of the stress states belonging to the corresponding subspace. The
influence functions play then the role of the stress mode indicators.
In particular one can consider a special case in which the decomposition (3.3)

coincide with the decomposition of S into eigensubspaces of the elasticity ten-
sors. If the influence functions are constant scalar parameters then the proposed
limit condition is equivalent to the generalized quadratic limit condition (2.2)
and the special case mentioned above occurs when the limit tensor H is coaxial
with the elasticity tensors. Such choice of the decomposition of S seems to be
the most natural one of all possible energetically orthogonal decompositions of
S since it is the only one which is both energetically orthogonal and orthogonal.
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3.1. Assumptions on influence functions

Following assumptions are made for the influence functions.
Interpretation of the value of influence functions at the limit state

If, under certain load, only a single term of energy occurs in the limit condition,
then the influence function defines the limit value of the elastic energy density
corresponding with the considered stress and strain state:

(3.4) Φlimα =
1

ηα

Domain of the influence functions
It seems natural that, to keep mutual independence of all terms of the condi-

tion, each influence function ηα should depend only on the projection of a stress
state σ on the tensor subspace Hα, this means on σα.

(3.5) ηα = ηα(σα) (no summation!)

Isotropy of the influence functions in their domains
Since ηα is a scalar function of a tensor argument one should expect that

in practical calculations it is expressed in terms of components or invariants
of σα. To define it by components of σα one should chose certain basis in the
corresponding subspace which in case of multidimensional subspaces can be done
arbitrary in the infinite number of ways. This purely mathematical operation
distinguishes certain stress states (basis states) among an infinite number of
eigenstates belonging to that subspace and it has no physical sense. This is
why functions ηα are assumed to be isotropic in the subspace in which they are
defined – according to the theorem on the representation of the scalar isotropic
functions, they can be expressed in terms of invariants of corresponding stress
projection

(3.6) ηα(σα) = ηα (I1(σα); I2(σα); I3(σα)) .

The arguments of influence functions could be also any other invariants of σα

– i.e. its principal values, its norm etc. If the considered space is one-dimensional
then each invariant is proportional to the measure of projection (or its power)
of the stress state onto the considered space – thus this measure should be the
only argument of the influence function.
Influence functions in subspaces of deviators
If the considered eigensubspace is a space of deviators then I1(σα) = 0 and

I2(σα) is proportional to the corresponding energy density. This indicates that
in fact it is the third invariant of stress tensor deviator which makes the qual-
itative distinction between various deviators belonging to the same subspace.
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It is strictly connected with abstract angles in multidimensional subspace of de-
viators – a kind of curvilinear coordinates in the considered subspace. Lode angle
is an example of such parameter in case of isotropy. In case of one-dimensional
deviatoric subspaces influence function is a constant parameter which is equal
the inversion of the limit value of the energy density respective for this state.

3.2. Failure criterion specification for chosen elastic symmetries

Let us now present a few examples of the general specification of the discussed
proposition of a limit condition. It is assumed that the considered energetically
orthogonal decompositon of the linear space of symmetric second order tensors is
the one respective for the spectral decomposition of the sitffness and compliance
tensor – then the proposed limit condition is a combination of terms of the main
decomposition of the elastic energy density with unequal, stress state dependent
weights.

3.2.1. Plane orthotropy. Energetic character of the considered hypothesis
makes it easy to formulate the failure criterion in case of plane stress/strain
state. Omitting description of a total plane anisotropy (lack of any symmetry)
we will now discuss general plane orthotropy. Spectral decomposition of the
plane orthotropic elasticity tensors gives us three orthogonal eigensubspaces:
• one-dimensional subspace of the states with non-zero hydrostatic component

λ1 =
2ExEy

(Ex +Ey) +
√

(Ex − Ey)2 + 4ν2E2
x

, ω1
∼=
[
cosℵ 0
0 sinℵ

]
,

• one-dimensional subspace of the states with non-zero hydrostatic component

λ2 =
2ExEy

(Ex + Ey)−
√

(Ex − Ey)2 + 4ν2E2
x

, ω2
∼=
[
− sinℵ 0

0 cosℵ

]
,

where

tanℵ = −Ex

2ν


 1

Ey
− 1

Ex
+

√(
1

Ey
− 1

Ex

)2

+ 4

(
ν

Ex

)2

,

• one dimensional subspace of pure shears

λ3 = 2Gxy, ω3
∼= 1√

2

[
0 1
1 0

]
,
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where Ex Ey are the Young moduli and Gxy is the Kirchhoff modulus, each
measured in the directions of the plane orthotropy, and ν is the Poisson’s ratio
at tension/compression along the x direction. Failure criterion (3.1) takes form

(3.7) Φ1η̃1 + Φ2η̃2 + Φ3
1

h3
= 1,

where h3 is the limit value of the elastic energy density corresponding with the
shearing eigenstate. Since all eigensubspaces of the plane orthotropic elasticity
tensor are one-dimensional all invariants of each projection of the stress state
onto every subspace are proportional to the measure of this projection or its
power. The limit condition may be thus rewritten in the following form

(3.8) η1(σ1) · σ2
1 + η2(σ2) · σ2

2 +
σ2
3

2ks
= 1,

where projections on proper eigensubspaces (not to be mistaken with principal
stresses):

σ1 = σxx cosℵ+ σyy sinℵ,

σ2 = −σxx sinℵ+ σyy cosℵ,

σ3 =
√
2τxy.

The parameters η1 and η2 are unknown influence functions and ks is the limit
shear stress in the directions parallel and perpendicular to the symmetry axes
of the material. The proposed general limit condition in a very special case of
plane stress state together with its specification for chosen plane symmetries is
discussed in details in [22].

3.2.2. Plane symmetry of square. Special case of orthotropy in which elastic
properties of the material are identical in two perpendicular directions and dif-
ferent than in any other pair of perpendicular directions is called the symmetry
of square. It can be considered as the plane orthotropy for which Ex = Ey = E
what corresponds with the value of the parameter tanℵ = −1. Spectral decom-
position of the plane elasticity tensors characterized by the symmetry of square
gives us three orthogonal eigensubspaces:
• one-dimensional subspace of plane hydrostatic stress states

λ1 =
E

1− ν
, ω1

∼= 1√
2

[
1 0
0 1

]
,
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• one-dimensional subspace of pure shears in directions at angle 45◦ referring
to the symmetry axes

λ2 =
E

1 + ν
, ω2

∼= 1√
2

[
1 0
0 −1

]
,

• one dimensional subspace of pure shears in directions parallel and perpendic-
ular to the symmetry axes

λ3 = 2Gxy, ω3
∼= 1√

2

[
0 1
1 0

]
,

The limit condition can be rewritten in the following form:

(3.9) ηv(p) · p2 +
τ245
k2s45

+
τ2

2k2s
= 1

where p =
1

2
(σxx + σyy), τ45 =

1√
2
(σyy − σxx), τ =

√
2τxy and ks and ks45 are

the limit shear stresses at pure shear along symmetry axes and at angle 45◦ to
the symmetry axes respectively. Parameters ks and ks45 can be found during
shearing properly oriented samples. It is worth noting that the sole term in the
limit condition which is still unknown is only pressure dependent. Since uniaxial
stress state has non-zero hydrostatic component, which in turn changes as the
orientation of the uniaxial load referring to the symmetry axes changes, so the
values of the pressure influence function can be explicitly found during simple
tension/compression test at various orientations of the specimen:

(3.10) ηv

(
1

2
kϕ

)
=

4

k2ϕ
·
[
1−

(
(τ45(ϕ))

2

k2s45
+

(τ(ϕ))2

2k2s

)]
,

where kϕ is the limit normal stress at tension / compression in direction at angle
ϕ referring to the symmetry axes and

(3.11)
τ45(ϕ) =

kϕ√
2

(
cos2 ϕ− sin2 ϕ

)
,

τ(ϕ) = kϕ
√
2 cosϕ sinϕ.

If the Burzyński’s [3] pressure influence function is assumed then ηp(p) takes the
following form:

(3.12) ηp(p) =

[
4

kckr
− 1

k2s45

]
+

2

p
· (kc − kr)

kckr
,

where kc and kr denote limit uniaxial stress along the symmetry axes at com-
pression and at tension respectively.
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3.2.3. Case of isotropy. In case of isotropy criterion (3.1) can be written as
follows:

(3.13) η̃f (J2, J3)Φf + η̃v(I1)Φv = 1,

where I1 is the first stress tensor invariant, and J2, J3 are second and third
stress deviator invariants respectively. Using principal stresses (which is allowed
in case of isotropy without further assumptions on the orientation of coordinate
system) it can be rewritten in the following form:

(3.14) ηf (θ)q
2 + ηp(p) = 1,

where

p =
1

3
I1 =

1

3
(σ1 + σ2 + σ3) =

1

3
(σxx + σyy + σzz),

q =
√
2J2 =

√
1

3
[(σ2 − σ3)2 + (σ3 − σ1)2 + (σ1 − σ2)2]

=

√
1

3

[
(σyy − σzz)2 + (σzz − σxx)2 + (σxx − σyy)2 + 6(τ2yz + τ2zx + τ2xy)

]
,

θ =
1

3
arccos

(
3
√
3

2

J3

J
3/2
2

)
– Lode angle.

The only limitation for the form of the Lode angle influence function is
that it has to be periodic with the period equal 120◦. It is often assumed that
the function decsribing the influence of the Lode angle is in fact a function of
a variable y = cos(3θ). Specific form of the Lode angle influence function can
be chosen among many propositions available in the literature [1], e.g.:
• two-parameter power function by Raniecki and Mróz [16]

ηf (θ) = [1 + αy]β,

• two-parameter exponential function by Raniecki and Mróz [16]

ηf (θ) = 1 + α
[
1− e−β(1+y)

]
,

• one-parameter trigonometric function by Lexcellent et al. [10]

ηf (θ) = cos

[
1

3
arccos [1− α(1− y)]

]
,
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• two-parameter trigonometric function by Podgórski [15] (see also Bigoni
and Piccolroaz [2])

ηf (θ) =
1

cos(30◦ − β)
cos

[
1

3
arccos (α · y)− β

]
.

Isotropic case of the presented proposition was discussed in details in [13]
and [21]. Its specification according to the experimental data available in the
literature was presented in [14].
It is worth mentioning that after substituting:

η̃v(I1) =





−2K

p2
·Mpc

√
(F − Fm) [2(1 − α)F + α] if F ∈ [0, 1],

+∞ if F /∈ [0, 1],

(3.15)

η̃f (J2, J3) =
2
√
6G

q
cos

[
β
π

6
− 1

3
arccos(γ cos(3θ))

]
,(3.16)

where K is the bulk modulus, G is the shear modulus, F is defined as:

(3.17) F =
−p+ c

pc + c

and pc, c, m, M , α, β, γ are certain constant material parameters, then the
presented general limit condition for isotropy (3.13) is equivalent to the one
proposed and precisely analyzed in various aspects by Bigoni and Piccolroaz
in [2].

4. Summary and conclusions

The new proposition of an energy-based hypothesis of material effort for
anisotropic materials exhibiting strength differential effect was introduced. Gen-
eral statement derived from Burzyński’s idea of influence functions and Rych-
lewski’s theorems on the orthogonal and energetically orthogonal decomposi-
tions of the space of symmetric second rank tensors was presented. Particular
assumptions on the form and properties of the influence functions were formu-
lated.
It was stated in the second section that the studied limit condition should be

applied only in case of proportionality limit state due to assumption of validity
of Hooke’s law used in its derivation. However it seems that the mathematical
form of this condition could be well used also in case of e.g. yield limit. It
also seems reasonable to use it as a plastic potential in an associated flow rule,
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however it might need some modifications e.g. due to requirement of material’s
incompressibility. Some applications of the newly introduced limit condition for
Inconel 718 alloy according to the experimental results available in the literature
are presented in [14].
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