Research Paper

Static Stability Analysis of Mass Sensors Consisting of Hygro-Thermally Activated Graphene Sheets Using a Nonlocal Strain Gradient Theory

Rajendran SELVAMANI1)∗, Madasamy MAHAVEER SREEJAYAN1) Farzad EBRAHIMI2)

1) Department of Mathematics
Karunya Institute of Technology and Sciences
Coimbatore-641114, Tamil Nadu, India
*Corresponding Author e-mail: selvamani@karunya.edu

2) Department of Mechanical Engineering
Imam Khomieni International University
Qazvin 34148-96818, Iran
e-mail: febrahimy@eng.ikiu.ac.ir

This paper develops a nonlocal strain gradient plate model for buckling analysis of graphene sheets under hygro-thermal environments with mass sensors. For a more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. The graphene sheet is modeled via a two-variable shear deformation plate theory that does not need shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on the elastic substrate are derived via Hamilton’s principle. Galerkin’s method is implemented to solve the governing equations for different boundary conditions. Effects of different factors, such as moisture concentration rise, temperature rise, nonlocal parameter, length scale parameter, nanoparticle mass and geometrical parameters, on buckling characteristics of graphene sheets are examined and presented as dispersion graphs.

Key words: humid-thermal buckling; refined plate theory; graphene sheets; nonlocal strain gradient; mass sensor.

1. Introduction

The 2D atomic crystal-like graphene reveals exceptional electronic and mechanical properties. Many carbon-based nanostructures, including carbon nanotubes, nanoplates and nanobeams, are considered as deformed graphene sheets,
see Lim et al. [1]. In fact, analysis of graphene sheets is a basic matter in the study of nanomaterials and nanostructures. Analysis of scale-free plates employing classical theories has been presented widely in the literature. However, such theories are not able to examine the scale effects on the nanostructures with small size. Therefore, the nonlocal elasticity theory of Eringen [2–3] was developed taking into account small scale effects. Contrary to the local theory in which the stress state at any given point depends only on the strain state at that point, in the nonlocal theory, the stress state at a given point depends on the strain states at all points. The nonlocal elasticity theory has been broadly applied to investigate the mechanical behavior of nanoscale structures (Hashemi and Samaei [4], Kheroubi et al. [5], Ebrahimi and Daman [6], Rakrak et al. [7], Aydogdu et al. [8], Elmerabet et al. [9]).

Pradhan and Murmu [10] examined nonlocal influences on buckling behavior of a single-layer graphene sheet subjected to uniform in-plane loadings. Pradhan and Kumar [11] performed a vibration study of orthotropic graphene sheets incorporating nonlocal effects using a semi-analytical approach. The application of the Levy type method to stability and vibrational investigation of nanosize plates including nonlocal effects was examined by Aksenc er and Aydogdu [12]. Mohammadi et al. [13] performed a shear buckling analysis of an orthotropic graphene sheet on an elastic substrate including thermal loading effect. In another work, Mohammadi et al. [14] examined the effect of in-plane loading on nonlocal vibrational behavior of circular graphene sheets. Ansari et al. [15] explored the vibration response of embedded nonlocal multi-layered graphene sheets accounting for various boundary conditions. Shen et al. [16] studied the vibration behavior of the nanomechanical mass sensor based on the nonlocal graphene sheet model. They showed that the vibration response of the graphene sheet is significantly influenced by the mass of the attached nanoparticle. Farajpour et al. [17] examined the static stability of nonlocal plates subjected to non-uniform in-plane edge loads. Ansari and Sahmani [18] employed molecular dynamics simulations to examine the biaxial buckling behavior of single-layered graphene sheets based on nonlocal elasticity theory. They matched the results obtained by molecular dynamics simulations with those of the nonlocal plate model to extract the appropriate values of nonlocal parameter. Static bending and vibrational behavior of single-layered graphene sheets on the Winkler-Pasternak foundation based on a two-variable higher-order shear deformation theory were studied by Sobhy [19], Eb rahimi and Barati [20], and Ehyaei and Daman [21]. Narendar and Gopalakrishnan [22] carried out a size-dependent stability analysis of orthotropic nanoscale plates according to a nonlocal two-variable refined plate theory. They stated that the two-variable refined plate model considers the transverse shear influences through the thickness of the plate; hence it is unnecessary to apply shear correction
factors. Murmu et al. [23] explored the influence of unidirectional magnetic fields on the vibrational behavior of nonlocal single-layer graphene sheets resting on an elastic substrate. Bessaim et al. [24] presented a nonlocal quasi-3D trigonometric plate model for the free vibration behavior of micro/nanoscale plates. Hashemi et al. [25] studied the free vibrational behavior of double viscoelastic graphene sheets coupled by visco-Pasternak medium. Ebrahimi and Shafiei [26] examined the influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy’s higher-order shear deformation plate theory. Jiang et al. [27] conducted the vibration analysis of a single-layered graphene sheet-based mass sensor using the Galerkin strip distributed transfer function method. Arani et al. [28] examined nonlocal vibration of axially moving graphene sheet resting on the orthotropic visco-Pasternak foundation under a longitudinal magnetic field. The thermoelastic bending analysis of carbon nanotube (CNT) and functionally graded carbon nanotube (FG CNT) was illustrated and the hygro-thermal activity was analyzed by different solution methods (Aslanyan and Sargyan [29], Bachiri et al. [30], Cinefra et al. [31], Jaiani and Bitsadze [32], Khdeir [33], Mirzaei [34], Vinyas et al. [35], Kurtinaitiene et al. [36], Ebrahimi et al. [37], Ebrahimi and Habibi [38]). Sobhy [39] analyzed the hygro-thermal vibrational behavior of coupled graphene sheets by an elastic medium using the two-variable plate theory. Zenkour [40] conducted a transient thermal analysis of graphene sheets on a viscoelastic foundation based on the nonlocal elasticity theory. Aydogdu and Filiz [41] analyzed the modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. They showed that the axial vibration behavior of single-walled carbon nanotubes can be used in mass sensors. Sakhaee-Pour et al. [42] studied the applications of single-layered graphene sheets as mass sensors and atomistic dust detectors.

It is clear that all of the previous papers on graphene sheets applied only the nonlocal elasticity theory to capture small scale effects. However, the nonlocal elasticity theory has some limitations in the accurate prediction of the mechanical behavior of nanostructures. For example, the nonlocal elasticity theory is unable to examine the stiffness increment observed in experimental works and strain gradient elasticity (Lam et al. [43]). Recently, Lim et al. [1] proposed the nonlocal strain gradient theory to introduce both of the length scales into a single theory. The nonlocal strain gradient theory captures the true influence of the two length scale parameters on the physical and mechanical behavior of small size structures, see Li et al. [44]. Ebrahimi and Barati [45–56] applied the nonlocal strain gradient theory to analyze nanobeams. They stated that mechanical characteristics of nanostructures are significantly affected by stiffness-softening and stiffness-hardening mechanisms due to the nonlocal and strain gradient effects,
respectively. Ebrahimi et al. [57] analyzed the thermal buckling analysis of the magneto-electro-elastic porous FG beam in the thermal environment. Ebrahimi et al. [58] developed the bending analysis of the magneto-electro piezoelectric nanobeams system under hygro-thermal loading. Ebrahimi et al. [59] studied the dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions. Ebrahimi [60] studied the thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under the magnetic field. Selvamani and Ebrahimi [61] investigated the axisymmetric vibration in a submerged, piezoelectric rod coated with a thin film. Most recently, Ebrahimi and Salari [62] extended the nonlocal strain gradient theory to analyze nanoplates to obtain the wave frequencies for a range of two scale parameters. So, it is crucial to incorporate both nonlocal and strain gradient effects in the initial analysis of graphene sheets.

Based on the newly developed nonlocal strain gradient theory, buckling behavior of single-layer graphene sheets-based mass sensors in hygro-thermal environment resting on the elastic medium is examined in this paper using a refined two-variable plate theory. The theory introduces two scale parameters corresponding to nonlocal and strain gradient effects to capture both stiffness-softening and stiffness-hardening influences. Hamilton’s principle is employed to obtain the governing equation of a nonlocal strain gradient graphene sheet. These equations are solved via Galerkin’s method to obtain the natural frequencies. It is shown that the buckling behavior of graphene sheets is significantly influenced by the nonlocal parameter, length scale parameter, moisture concentration rise, nanoparticle mass, orthotropic elastic foundation and boundary conditions.

2. Problem formulation

The higher-order refined plate theory has the following displacement field:

\begin{align}
(2.1) \quad u_1(x, y, z) &= u(x, y) - z \frac{\partial w_b}{\partial x} - f(z) \frac{\partial w_s}{\partial x}, \\
(2.2) \quad u_2(x, y, z) &= v(x, y) - z \frac{\partial w_b}{\partial y} - f(z) \frac{\partial w_s}{\partial y}, \\
(2.3) \quad u_3(x, y, z) &= w_b(x, y) + w_s(x, y),
\end{align}

where the present theory has a trigonometric function in the following form:

\begin{equation}
(2.4) \quad f(z) = z - \frac{h}{\pi} \sin \left(\frac{\pi z}{h} \right).
\end{equation}
Also, u and v are displacements components of the mid-surface and w_b and w_s denote the bending and shear transverse displacement, respectively. Nonzero strains of present plate model are expressed as follows:

\[
\begin{pmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{pmatrix} = +z \begin{pmatrix}
\kappa^b_x \\
\kappa^b_y \\
\kappa^b_{xy}
\end{pmatrix} + f(z) \begin{pmatrix}
\kappa^s_x \\
\kappa^s_y \\
\kappa^s_{xy}
\end{pmatrix},
\]

\[\gamma_{yz} \end{pmatrix} = g(z) \begin{pmatrix}
\gamma^s_{yz} \\
\gamma^s_{xz}
\end{pmatrix},
\]

where $g(z) = 1 - d f / d z$ and

\[
\begin{pmatrix}
\kappa^b_x \\
\kappa^b_y \\
\kappa^b_{xy}
\end{pmatrix} = \begin{pmatrix}
-\frac{\partial^2 w_b}{\partial x^2} \\
-\frac{\partial^2 w_b}{\partial y^2} \\
-2 \frac{\partial^2 w_b}{\partial x \partial y}
\end{pmatrix}, \quad \begin{pmatrix}
\kappa^s_x \\
\kappa^s_y \\
\kappa^s_{xy}
\end{pmatrix} = \begin{pmatrix}
-\frac{\partial^2 w_s}{\partial x^2} \\
-\frac{\partial^2 w_s}{\partial y^2} \\
-2 \frac{\partial^2 w_s}{\partial x \partial y}
\end{pmatrix},
\]

\[
\begin{pmatrix}
\gamma^s_{yz} \\
\gamma^s_{xz}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial w_s}{\partial y} \\
\frac{\partial w_s}{\partial x}
\end{pmatrix}.
\]

Also, Hamilton’s principle expresses that

\[\int_{0}^{t} \delta(U + V) \, dt = 0\]

in which U is strain energy and V is work done by external loads. The variation of strain energy is calculated as

\[\delta U = \int_{V} \sigma_{ij} \delta \varepsilon_{ij} \, dV \]

\[= \int_{V} (\sigma_x \delta \varepsilon_x + \sigma_y \delta \varepsilon_y + \sigma_{xy} \delta \gamma_{xy} + \sigma_{yz} \delta \gamma_{yz} + \sigma_{xz} \delta \gamma_{xz}) \, dV.\]
Substituting Eqs (2.5) and (2.6) into Eq. (2.8) yields:

\[
\delta U = \int_{a}^{b} \int_{0}^{0} \left[-M_{x}^{b} \frac{\partial^{2} \delta w_{b}}{\partial x^{2}} - M_{x}^{s} \frac{\partial^{2} \delta w_{s}}{\partial x^{2}} - M_{y}^{b} \frac{\partial^{2} \delta w_{b}}{\partial y^{2}} - M_{y}^{s} \frac{\partial^{2} \delta w_{s}}{\partial y^{2}}
\right. \\
-2M_{xy}^{b} \frac{\partial^{2} \delta w_{b}}{\partial x \partial y} - 2M_{xy}^{s} \frac{\partial^{2} \delta w_{s}}{\partial x \partial y} + Q_{yz} \frac{\partial \delta w_{s}}{\partial y} + Q_{xz} \frac{\partial \delta w_{s}}{\partial x} \bigg] \, dx \, dy
\]

in which

\[
(M_{i}^{b}, M_{i}^{s}) = \int_{-h/2}^{h/2} (z, f) \sigma_{i} \, dz, \quad i = (x, y, xy),
\]

(2.10)

\[
Q_{i} = \int_{-h/2}^{h/2} g \sigma_{i} \, dz, \quad i = (xz, yz).
\]

The variation of the work done by applied loads can be written as

\[
\delta V = \int_{a}^{b} \int_{0}^{0} \left(N_{x}^{0} \frac{\partial (w_{b} + w_{s})}{\partial x} \frac{\partial \delta (w_{b} + w_{s})}{\partial x} + N_{y}^{0} \frac{\partial (w_{b} + w_{s})}{\partial y} \frac{\partial \delta (w_{b} + w_{s})}{\partial y}
\right. \\
+2\delta N_{xy}^{0} \frac{\partial (w_{b} + w_{s})}{\partial x} \frac{\partial (w_{b} + w_{s})}{\partial y} - k_{w} \delta (w_{b} + w_{s}) + q_{\text{particle}} \delta (w_{b} + w_{s})
\left. +k_{p} \left(\frac{\partial (w_{b} + w_{s})}{\partial x} \frac{\partial \delta (w_{b} + w_{s})}{\partial x} + \frac{\partial (w_{b} + w_{s})}{\partial y} \frac{\partial \delta (w_{b} + w_{s})}{\partial y} \right) \right) \, dx \, dy,
\]

where \(N_{x}^{0}, N_{y}^{0}, N_{xy}^{0}\) are in-plane applied loads, and \(k_{w}\) and \(k_{p}\) are the Winkler and Pasternak constants. Also, \(q_{\text{particle}}\) is the transverse force due to attached nanoparticles (such as a buckyball and molecular or bacterium) with mass \(m_{c}\) attached at the location \(x = x_{0}, y = y_{0}:\)

\[
q_{\text{particle}} = - \sum_{j=1}^{N} m_{j} \delta(x - x_{j}, y - y_{j}) \frac{\partial^{2} w}{\partial t^{2}},
\]

(2.11)_2

in which \(m_{j}\) is the mass of \(j\)-th attached particle and \(N\) is the number of concentrated masses. Also, \(\delta(x - x_{j})\) is the Dirac delta function defined by:

\[
\delta(x - x_{j}) = \begin{cases}
\infty & \text{for } x \neq x_{j}, \\
0 & \text{for } x = x_{j}.
\end{cases}
\]

(2.11)_3
By inserting Eqs (2.8)–(2.11) into Eq. (2.7) and setting the coefficients of δw_b and δw_s to zero, the following Euler-Lagrange equations can be obtained:

\begin{equation}
\frac{\partial^2 M_b}{\partial x^2} + 2 \frac{\partial^2 M_b}{\partial x \partial y} + \frac{\partial^2 M_b}{\partial y^2} - (N^T + N^H) \nabla^2 (w_b + w_s) + k_p \left[\frac{\partial^2 (w_b + w_s)}{\partial x^2} + \frac{\partial^2 (w_b + w_s)}{\partial y^2} \right] - k_w (w_b + w_s) - \sum_{j=1}^{N} m_j \delta(x - x_j, y - y_j) \frac{\partial^2 w}{\partial t^2} = 0,
\end{equation}

\begin{equation}
\frac{\partial^2 M_s}{\partial x^2} + 2 \frac{\partial^2 M_s}{\partial x \partial y} + \frac{\partial^2 M_s}{\partial y^2} + \frac{\partial Q_{xz}}{\partial x} + \frac{\partial Q_{yz}}{\partial y} - (N^T + N^H) \nabla^2 (w_b + w_s) + k_p \left[\frac{\partial^2 (w_b + w_s)}{\partial x^2} + \frac{\partial^2 (w_b + w_s)}{\partial y^2} \right] - k_w (w_b + w_s) - \sum_{j=1}^{N} m_j \delta(x - x_j, y - y_j) \frac{\partial^2 w}{\partial t^2} = 0,
\end{equation}

where $N_x^0 = N_y^0 = N^T + N^H$, $N_{xy}^0 = 0$, and hygro-thermal resultant can be expressed as

\begin{equation}
N^T = \int_{-h/2}^{h/2} \frac{E}{1 - \nu} \alpha \Delta T \, dz,
\end{equation}

\begin{equation}
N^H = \int_{-h/2}^{h/2} \frac{E}{1 - \nu} \beta \Delta C \, dz.
\end{equation}

2.1. Strain gradient nanoplate model via nonlocal form

The newly developed nonlocal strain gradient theory \[37\] takes into account both the nonlocal stress field and the strain gradient effects by introducing two scale parameters. This theory defines the stress field as

\begin{equation}
\sigma_{ij} = \sigma_{ij}^{(0)} - \frac{d \sigma_{ij}^{(1)}}{dx},
\end{equation}
in which the stresses $\sigma_{xx}^{(0)}$ and $\sigma_{xx}^{(1)}$ are corresponding to strain ε_{xx} and strain gradient $\varepsilon_{xx,x}$, respectively as

$$\sigma_{ij}^{(0)} = \int_0^L C_{ijkl} \alpha_0(x,x',e_0a)\varepsilon_{kl}'(x') \, dx', $$

(2.17)

$$\sigma_{ij}^{(1)} = l^2 \int_0^L C_{ijkl} \alpha_1(x,x',e_1a)\varepsilon_{kl,x}'(x') \, dx', $$

in which C_{ijkl} are the elastic coefficients, e_0a and e_1a capture the nonlocal effects and l captures the strain gradient effects. When the nonlocal functions $\alpha_0(x,x',e_0a)$ and $\alpha_1(x,x',e_1a)$ satisfy the developed conditions by Eringen [3], the constitutive relation of nonlocal strain gradient theory has the following form:

$$[1 - (e_1a)^2\nabla^2][1 - (e_0a)^2\nabla^2]\sigma_{ij} = C_{ijkl}[1 - (e_1a)^2\nabla^2]\varepsilon_{kl}$$

$$- C_{ijkl}l^2[1 - (e_0a)^2\nabla^2]\nabla^2\varepsilon_{kl},$$

(2.18)

in which ∇^2 denotes the Laplacian operator. Considering $e_1 = e_0 = e$, the general constitutive relation in Eq. (2.18) becomes:

$$[1 - (ea)^2\nabla^2]\sigma_{ij} = C_{ijkl}[1 - l^2\nabla^2]\varepsilon_{kl}.$$

(2.19)

To consider hygro-thermal effects, Eq. (2.19) can be written as [35]

$$[1 - (ea)^2\nabla^2]\sigma_{ij} = C_{ijkl}[1 - l^2\nabla^2](\varepsilon_{kl} - \alpha_{kl}T - \beta_{kl}C),$$

(2.20)

where α_{kl} and β_{kl} are thermal and moisture expansion coefficients, respectively. Finally, the constitutive relations of nonlocal strain gradient theory can be expressed by:

$$\begin{pmatrix}
\sigma_x \\
\sigma_y \\
\sigma_{xy} \\
\sigma_{yz} \\
\sigma_{xz}
\end{pmatrix} = (1 - l^2\nabla^2)$$

$$\begin{pmatrix}
Q_{11} & Q_{12} & 0 & 0 & 0 \\
Q_{12} & Q_{22} & 0 & 0 & 0 \\
0 & 0 & Q_{66} & 0 & 0 \\
0 & 0 & 0 & Q_{44} & 0 \\
0 & 0 & 0 & 0 & Q_{55}
\end{pmatrix} \begin{pmatrix}
\varepsilon_x - \alpha \Delta T - \beta \Delta C \\
\varepsilon_y - \alpha \Delta T - \beta \Delta C \\
\gamma_{xy} \\
\gamma_{yz} \\
\gamma_{xz}
\end{pmatrix}.$$
where

\[(2.22) \quad Q_{11} = Q_{22} = \frac{E}{1 - v^2}, \quad Q_{12} = vQ_{11}, \quad Q_{44} = Q_{55} = Q_{66} = \frac{E}{2(1 + v)}.\]

Inserting Eq. (2.10) in Eq. (2.23) gives:

\[(2.23) \quad (1 - (ea)^2 \nabla^2) \begin{bmatrix} M_x^b \\ M_y^b \\ M_{xy}^b \end{bmatrix} = (1 - l^2 \nabla^2) \begin{bmatrix} D_{11} & D_{12} & 0 \\ D_{12} & D_{22} & 0 \\ 0 & 0 & D_{66} \end{bmatrix} \begin{bmatrix} -\frac{\partial^2 w_b}{\partial x^2} \\ -\frac{\partial^2 w_b}{\partial y^2} \\ -2 \frac{\partial^2 w_b}{\partial x \partial y} \end{bmatrix} + \begin{bmatrix} D_{11}^s & D_{12}^s & 0 \\ D_{12}^s & D_{22}^s & 0 \\ 0 & 0 & D_{66}^s \end{bmatrix} \begin{bmatrix} -\frac{\partial^2 w_s}{\partial x^2} \\ -\frac{\partial^2 w_s}{\partial y^2} \\ -2 \frac{\partial^2 w_s}{\partial x \partial y} \end{bmatrix},\]

\[(2.24) \quad (1 - (ea)^2 \nabla^2) \begin{bmatrix} M_x^s \\ M_y^s \\ M_{xy}^s \end{bmatrix} = (1 - l^2 \nabla^2) \begin{bmatrix} D_{11}^s & D_{12}^s & 0 \\ D_{12}^s & D_{22}^s & 0 \\ 0 & 0 & D_{66}^s \end{bmatrix} \begin{bmatrix} -\frac{\partial^2 w_b}{\partial x^2} \\ -\frac{\partial^2 w_b}{\partial y^2} \\ -2 \frac{\partial^2 w_b}{\partial x \partial y} \end{bmatrix} + \begin{bmatrix} H_{11}^s & H_{12}^s & 0 \\ H_{12}^s & H_{22}^s & 0 \\ 0 & 0 & H_{66}^s \end{bmatrix} \begin{bmatrix} -\frac{\partial^2 w_s}{\partial x^2} \\ -\frac{\partial^2 w_s}{\partial y^2} \\ -2 \frac{\partial^2 w_s}{\partial x \partial y} \end{bmatrix},\]

\[(2.25) \quad (1 - (ea)^2 \nabla^2) \begin{bmatrix} Q_x \\ Q_y \end{bmatrix} = (1 - l^2 \nabla^2) \begin{bmatrix} A_{44}^s & 0 \\ 0 & A_{55}^s \end{bmatrix} \begin{bmatrix} \frac{\partial w_s}{\partial x} \\ \frac{\partial w_s}{\partial y} \end{bmatrix},\]
in which the cross-sectional rigidities are defined as follows:

\[
\left\{ \begin{array}{c}
D_{11}, D_{11}^s, H_{11}^s \\
D_{12}, D_{12}^s, H_{12}^s \\
D_{66}, D_{66}^s, H_{66}^s
\end{array} \right\} = \int_{-h/2}^{h/2} Q_{11}(z^2, zf, f^2) \left\{ \begin{array}{c}
\frac{1}{\nu} \\
\frac{1}{2(1-\nu)}
\end{array} \right\} \mathrm{d}z,
\]

(2.26)

\[
A_{44}^s = A_{55}^s = \int_{-h/2}^{h/2} g^2 \frac{E}{2(1+\nu)} \mathrm{d}z.
\]

(2.27)

The governing equations of the nonlocal strain gradient graphene sheet in terms of the displacement are obtained by inserting Eqs (2.23)–(2.25) into Eqs (2.12) and (2.13) as follows:

\[
- D_{11} \left[\frac{\partial^4 w_b}{\partial x^4} - l^2 \left(\frac{\partial^6 w_b}{\partial x^6} + \frac{\partial^6 w_b}{\partial x^4 \partial y^2} \right) \right]
- 2(D_{12} + 2D_{66}) \left[\frac{\partial^4 w_b}{\partial x^2 \partial y^2} - l^2 \left(\frac{\partial^6 w_b}{\partial x^4 \partial y^2} + \frac{\partial^6 w_b}{\partial x^2 \partial y^4} \right) \right]
- D_{22} \left[\frac{\partial^4 w_b}{\partial y^4} - l^2 \left(\frac{\partial^6 w_b}{\partial y^6} + \frac{\partial^6 w_b}{\partial y^4 \partial x^2} \right) \right] - D_{11}^s \left[\frac{\partial^4 w_s}{\partial x^4} - l^2 \left(\frac{\partial^6 w_s}{\partial x^6} + \frac{\partial^6 w_s}{\partial x^4 \partial y^2} \right) \right]
- 2(D_{12}^s + 2D_{66}^s) \left[\frac{\partial^4 w_s}{\partial x^2 \partial y^2} - l^2 \left(\frac{\partial^6 w_s}{\partial x^4 \partial y^2} + \frac{\partial^6 w_s}{\partial x^2 \partial y^4} \right) \right]
- D_{22}^s \left[\frac{\partial^4 w_s}{\partial y^4} - l^2 \left(\frac{\partial^6 w_s}{\partial y^6} + \frac{\partial^6 w_s}{\partial y^4 \partial x^2} \right) \right] - (N_T + N_H) \left[\frac{\partial^2 (w_b + w_s)}{\partial x^2} + \frac{\partial^2 (w_b + w_s)}{\partial y^2} \right]
- (ea)^2 \left[\frac{\partial^4 (w_b + w_s)}{\partial x^4} + 2 \frac{\partial^4 (w_b + w_s)}{\partial x^2 \partial y^2} + \frac{\partial^4 (w_b + w_s)}{\partial y^4} \right]
+ k_p \left[\frac{\partial^2 (w_b + w_s)}{\partial x^2} + \frac{\partial^2 (w_b + w_s)}{\partial y^2} \right]
- (ea)^2 \left[\frac{\partial^4 (w_b + w_s)}{\partial x^4} + 2 \frac{\partial^4 (w_b + w_s)}{\partial x^2 \partial y^2} + \frac{\partial^4 (w_b + w_s)}{\partial y^4} \right]
- k_w \left[(w_b + w_s) - (ea)^2 \left(\frac{\partial^2 (w_b + w_s)}{\partial x^2} + \frac{\partial^2 (w_b + w_s)}{\partial y^2} \right) \right]
- \sum_{j=1}^{N} m_j \delta(x - x_j, y - y_j) \frac{\partial^2 w}{\partial t^2} = 0,
\]

(2.28)
(2.29) \[-D_{11}^{s} \left(\frac{\partial^4 w_b}{\partial x^4} - t^2 \left(\frac{\partial^6 w_b}{\partial x^6} + \frac{\partial^6 w_b}{\partial x^4 \partial y^2} \right) \right) + A_{55}^{s} \left(\frac{\partial^2 w_s}{\partial x^2} - t^2 \left(\frac{\partial^4 w_s}{\partial x^4} + \frac{\partial^4 w_s}{\partial x^2 \partial y^2} \right) \right) + A_{44}^{s} \left(\frac{\partial^2 w_s}{\partial y^2} - t^2 \left(\frac{\partial^4 w_s}{\partial y^4} + \frac{\partial^4 w_s}{\partial y^2 \partial x^2} \right) \right) \]
\[= -2(D_{12}^{s} + 2D_{66}^{s}) \left(\frac{\partial^4 w_b}{\partial x^2 \partial y^2} - t^2 \left(\frac{\partial^6 w_b}{\partial x^4 \partial y^2} + \frac{\partial^6 w_b}{\partial x^2 \partial y^4} \right) \right) \]
\[- D_{22}^{s} \left(\frac{\partial^4 w_s}{\partial y^4} - t^2 \left(\frac{\partial^6 w_b}{\partial y^6} + \frac{\partial^6 w_b}{\partial y^4 \partial x^2} \right) \right) - H_{11}^{s} \left(\frac{\partial^4 w_s}{\partial x^4} - t^2 \left(\frac{\partial^6 w_s}{\partial x^6} + \frac{\partial^6 w_s}{\partial x^4 \partial y^2} \right) \right) \]
\[- H_{22}^{s} \left[\frac{\partial^4 w_s}{\partial y^4} - t^2 \left(\frac{\partial^6 w_s}{\partial y^6} + \frac{\partial^6 w_s}{\partial y^4 \partial x^2} \right) \right] - (N^T + N^H) \left[\frac{\partial^2 (w_b + w_s)}{\partial x^2} + \frac{\partial^2 (w_b + w_s)}{\partial y^2} \right] \]
\[- (ea)^2 \left(\frac{\partial^4 (w_b + w_s)}{\partial x^4} + 2 \frac{\partial^4 (w_b + w_s)}{\partial x^2 \partial y^2} + \frac{\partial^4 (w_b + w_s)}{\partial y^4} \right) \]
\[+ k_p \left[\frac{\partial^2 (w_b + w_s)}{\partial x^2} + \frac{\partial^2 (w_b + w_s)}{\partial y^2} - (ea)^2 \left(\frac{\partial^4 (w_b + w_s)}{\partial x^4} \right. \right. \]
\[+ 2 \frac{\partial^4 (w_b + w_s)}{\partial x^2 \partial y^2} + \frac{\partial^4 (w_b + w_s)}{\partial y^4} \right) \]
\[- k_w \left[(w_b + w_s) - (ea)^2 \left(\frac{\partial^2 (w_b + w_s)}{\partial x^2} + \frac{\partial^2 (w_b + w_s)}{\partial y^2} \right) \right] \]
\[- \sum_{j=1}^{N} m_j \delta(x - x_j, y - y_j) \frac{\partial^2 w}{\partial t^2} = 0. \]

3. Solution by Galerkin’s method

In this section, Galerkin’s method is implemented to solve the governing equations of nonlocal strain gradient graphene sheets. Thus, the displacement field can be calculated as:

(3.1) \[w_b = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{bmn} \Phi_{bm}(x) \Psi_{bn}(y), \]

(3.2) \[w_s = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{snn} \Phi_{sm}(x) \Psi_{sn}(y), \]

where \((W_{bmn}, W_{snn})\) are the unknown coefficients and the functions \(\Phi_m\) and \(\Psi_n\) satisfy boundary conditions. Boundary conditions based on present plate model are:
simply-supported edge:

\[w_b = w_s = 0, \quad \frac{\partial^2 w_b}{\partial x^2} = \frac{\partial^2 w_s}{\partial x^2} = \frac{\partial^2 w_b}{\partial y^2} = \frac{\partial^2 w_s}{\partial y^2} = 0, \]

clamped edge:

\[w_b = w_s = 0, \quad \frac{\partial w_b}{\partial x} = \frac{\partial w_s}{\partial x} = \frac{\partial w_b}{\partial y} = \frac{\partial w_s}{\partial y} = 0. \]

Inserting Eqs (3.1) and (3.2) into Eqs (2.28) and (2.29) and multiplying both sides of the equations by \(\Phi_{in} \Psi_{in} \) \((i = bs) \) and integrating over the whole region leads to the following simultaneous equations:

\[
\int_0^b \int_0^a \Phi_{bm} \Psi_{bn} \left[-D_{11} \left(\frac{\partial^4 \Phi_{bm}}{\partial x^4} \Psi_{bn} - l^2 \left(\frac{\partial^6 \Phi_{bm}}{\partial x^6} \Psi_{bn} + \frac{\partial^4 \Phi_{bm}}{\partial x^4} \frac{\partial^2 \Psi_{bn}}{\partial y^2} \right) \right) \\
- 2(D_{12} + 2D_{66}) \left(\frac{\partial^2 \Phi_{sm}}{\partial x^2} \frac{\partial^2 \Psi_{sn}}{\partial y^2} - l^2 \left(\frac{\partial^4 \Phi_{sm}}{\partial x^4} \frac{\partial^2 \Psi_{sn}}{\partial y^2} + \frac{\partial^2 \Phi_{sm}}{\partial x^2} \frac{\partial^4 \Psi_{sn}}{\partial y^4} \right) \right) \\
- D_{22} \left(\frac{\partial^4 \Psi_{sm}}{\partial y^4} \Phi_{bn} - l^2 \left(\frac{\partial^6 \Psi_{sm}}{\partial y^6} \Phi_{bn} + \frac{\partial^4 \Psi_{sm}}{\partial y^4} \frac{\partial^2 \Psi_{bn}}{\partial y^2} \right) \right) \\
- D_{11}^s \left(\frac{\partial^4 \Phi_{sm}}{\partial x^4} \Phi_{sn} - l^2 \left(\frac{\partial^6 \Phi_{sm}}{\partial x^6} \Phi_{sn} + \frac{\partial^4 \Phi_{sm}}{\partial x^4} \frac{\partial^2 \Psi_{bn}}{\partial y^2} \right) \right) \\
- 2(D_{12}^s + 2D_{66}^s) \left(\frac{\partial^2 \Phi_{sm}}{\partial x^2} \frac{\partial^2 \Psi_{sn}}{\partial y^2} - l^2 \left(\frac{\partial^4 \Phi_{sm}}{\partial x^4} \frac{\partial^2 \Psi_{sn}}{\partial y^2} + \frac{\partial^2 \Phi_{sm}}{\partial x^2} \frac{\partial^4 \Psi_{sn}}{\partial y^4} \right) \right) \\
- D_{22}^s \left(\frac{\partial^4 \Psi_{sm}}{\partial y^4} \Phi_{sn} - l^2 \left(\frac{\partial^6 \Psi_{sm}}{\partial y^6} \Phi_{sn} + \frac{\partial^4 \Psi_{sm}}{\partial y^4} \frac{\partial^2 \Psi_{bn}}{\partial y^2} \right) \right) \\
- (N^T + N^H) \left(\frac{\partial^2 \Phi_{bm}}{\partial x^2} \Psi_{bn} + \frac{\partial^2 \Phi_{sm}}{\partial x^2} \Psi_{sn} + \frac{\partial^2 \Psi_{bn}}{\partial y^2} \Phi_{bn} + \frac{\partial^2 \Psi_{bn}}{\partial y^2} \Phi_{bn} \right) \\
- (ea)^2 \left(\frac{\partial^4 \Phi_{bm}}{\partial x^4} \Psi_{bn} + \frac{\partial^4 \Phi_{sm}}{\partial x^4} \Psi_{sn} + 2 \left(\frac{\partial^2 \Phi_{bm}}{\partial x^2} \frac{\partial^2 \Psi_{bn}}{\partial y^2} + \frac{\partial^2 \Phi_{sm}}{\partial x^2} \frac{\partial^2 \Psi_{sn}}{\partial y^2} \right) \right) \\
+ \frac{\partial^4 \Psi_{sm}}{\partial y^4} \Phi_{sn} + \frac{\partial^4 \Phi_{bn}}{\partial y^4} \Phi_{bn} \right) + k_p \left(1 - (ea)^2 \left(\frac{\partial}{\partial x^2} + \frac{\partial}{\partial x^2} \right) \right) \\
\left[\frac{\partial^2 \Phi_{bm}}{\partial x^2} \Psi_{bn} + \frac{\partial^2 \Phi_{sm}}{\partial x^2} \Psi_{sn} + \frac{\partial^2 \Psi_{bn}}{\partial y^2} \Phi_{bn} + \frac{\partial^2 \Psi_{bn}}{\partial y^2} \Phi_{bn} \right] \\
- k_w \left(1 - (ea)^2 \left(\frac{\partial}{\partial x^2} + \frac{\partial}{\partial x^2} \right) \right) (\Phi_{bm} \Psi_{bn} + \Phi_{sm} \Psi_{sn}) \\
+ \omega^2 \frac{4mc}{ab} \sin^2 \left(\frac{x_0}{a} \right) \sin^2 \left(\frac{y_0}{b} \right) \left(1 - (ea)^2 \left(\frac{\partial}{\partial x^2} + \frac{\partial}{\partial x^2} \right) \right) \\
\cdot (\Phi_{bm} \Psi_{bn} + \Phi_{sm} \Psi_{sn}) \right] dxdy = 0,
\]
The function Φ_m for different boundary conditions is defined by:

\begin{align}
\text{SS:} \quad \Phi_m(x) &= \sin(\lambda_m x), \quad \lambda_m = \frac{m\pi}{a}, \\
\text{CC:} \quad \Phi_m(x) &= \sin(\lambda_m x) - \sinh(\lambda_m x) - \xi_m(\cos(\lambda_m x) - \cosh(\lambda_m x)), \\
\xi_m &= \frac{\sin(\lambda_m x) - \sinh(\lambda_m x)}{\cos(\lambda_m x) - \cosh(\lambda_m x)}, \quad \lambda_1 = 4.730, \quad \lambda_2 = 7.853, \\
\lambda_3 &= 10.996, \quad \lambda_4 = 14.137, \quad \lambda_{m\geq5} = \frac{(m+0.5)\pi}{a},
\end{align}
(3.9) CS: \[\Phi_m(x) = \sin(\lambda_m x) - \sinh(\lambda_m x) - \xi_m(\cos(\lambda_m x) - \cosh(\lambda_m x)), \]
\[\xi_m = \frac{\sin(\lambda_m x) + \sinh(\lambda_m x)}{\cos(\lambda_m x) + \cosh(\lambda_m x)}, \]
\[\lambda_1 = 3.927, \quad \lambda_2 = 7.069, \]
\[\lambda_3 = 10.210, \quad \lambda_4 = 13.352, \quad \lambda_{m \geq 5} = \frac{(m + 0.25) \pi}{a}. \]

The function \(\Psi_n \) can be obtained by replacing \(x, m, \) and \(a \), respectively by \(y, n, \) and \(b \). Setting the coefficient matrix of the above equations leads to the following eigenvalue problem:

(3.10) \[([K]) \begin{cases} W_b \\ W_s \end{cases} = 0, \]

where \([K]\) is the stiffness matrix. Finally, setting the coefficient matrix to zero gives the buckling loads. It should be noted that calculations are performed based on the following dimensionless quantities:

\[\bar{N} = N \frac{a^2}{D^*}, \quad \bar{\omega} = \omega \frac{a^2}{h} \sqrt{\frac{\rho}{E}}, \quad K_w = k_w \frac{a^4}{D^*}, \quad K_p = k_p \frac{a^2}{D^*}, \]

(3.11) \[D^* = \frac{Eh^3}{12(1 - v^2)}, \quad \mu = \frac{ea}{a}, \quad \lambda = \frac{l}{a}. \]

4. NUMERICAL RESULTS AND THEIR DISCUSSION

This section is devoted to study the hygro-thermo-mechanical buckling behavior of nonlocal strain gradient bedded graphene sheets-based mass sensors based on a two-variable shear deformation theory. The model introduces two scale coefficients related to nonlocal and strain gradient effects for a more accurate analysis of graphene sheets. Configuration of graphene sheet resting on elastic substrate and distribution of mass sensors are shown in Figs 1 and 2. Material

Fig. 1. Configuration of graphene sheet resting on an elastic substrate.
properties of the graphene sheet are: $E = 1$ TPa, $v = 0.19$, and $\rho = 2300$ kg/m3. Also, the thickness of the graphene sheet is considered as $h = 0.34$ nm. Buckling loads of a nanoplate are validated with those obtained by Hashemi and Samaei [4] for various nonlocal parameters ($\mu = 0, 0.5, 1, 1.5, 2$ nm2). Obtained buckling loads via the present Galerkin method are in excellent agreement with those of the exact solution presented by Hashemi and Samaei [4], as shown in Table 1. For the comparison study, the strain gradient or length scale parameter and mass sensor are set to zero.

Table 1. Comparison of buckling loads of a graphene sheet for various nonlocal parameters.

<table>
<thead>
<tr>
<th>μ</th>
<th>$a/h = 100$</th>
<th></th>
<th>$a/h = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9.8671</td>
<td>9.8663</td>
<td>9.8067</td>
</tr>
<tr>
<td>0.5</td>
<td>9.4029</td>
<td>9.40282</td>
<td>9.3455</td>
</tr>
<tr>
<td>1</td>
<td>8.9803</td>
<td>8.98049</td>
<td>8.9527</td>
</tr>
<tr>
<td>1.5</td>
<td>8.5939</td>
<td>8.59447</td>
<td>8.5420</td>
</tr>
<tr>
<td>2</td>
<td>8.2393</td>
<td>8.24026</td>
<td>8.1898</td>
</tr>
</tbody>
</table>

Examination of nonlocal and strain gradient effects on buckling loads of graphene sheets for different boundary conditions (SSSS, CSSS, CCSS, and CCCC) is presented in Fig. 3. In this figure, various values of nonlocal parameter ($\mu = 0 \sim 0.5$) and length scale parameter ($\lambda = 0, 0.1, 0.15, 0.2$) are considered. It is clear that when $\lambda = 0$, the buckling loads of a graphene sheet based on a well-known nonlocal elasticity theory will be obtained. However, when both $\mu = 0$ and $\lambda = 0$, the results based on classical continuum mechanics are rendered. It is observed that the buckling load of the graphene sheet reduces with an increase of nonlocal parameter for every kind of boundary condition. This ob-
Fig. 3. Variation of the dimensionless buckling load versus nonlocal parameter for different length scale parameters and boundary conditions.

The observation indicates that the nonlocal parameter exerts a stiffness-softening effect, which leads to lower vibration frequencies. However, the effect of the nonlocal parameter on the magnitude of buckling loads depends on the value of strain gradient or length scale parameter. In fact, the buckling load of the graphene sheet increases with an increase of length scale parameter, which highlights the stiffness-hardening effect due to the strain gradients. Also, it is clear that making the graphene sheet more rigid by increasing the number of clamped edges leads to higher buckling loads.

In Fig. 4, a variation of the dimensionless buckling load of a nonlocal strain gradient graphene sheet ($\mu = 0.2, \lambda = 0.1$) versus moisture concentration rise for different temperatures ($\Delta T = 0, 20, 50, 80$) and boundary conditions is plotted. It is well-known that hygro-thermal loadings degrade the plate stiffness...
and significantly affect the performance of structures. It is seen that an increase of moisture concentration (ΔC) leads to smaller dimensionless buckling loads for every value of temperature change. However, temperature increase leads to lower buckling loads at a fixed moisture concentration rise. So, the buckling load of a graphene sheet decreases significantly when it is subjected to a severe hygro-thermal environment.

Figure 5 demonstrates the variation of the dimensionless buckling load versus length scale parameter for different the Winkler and Pasternak constants when $\mu = 0.2$, $\lambda = 0.1$, $\Delta T = 50$, $\Delta C = 0.1$. However, it is clear that the buckling load of the graphene sheet depends on the values of both Winkler and Pasternak parameters. In fact, the Pasternak layer provides continuous interaction with the graphene sheet, while the Winkler layer has a discontinuous interaction with
the graphene sheet. Increasing the Winkler and Pasternak parameters leads to larger buckling loads by enhancing the bending rigidity of graphene sheets. But, the Pasternak layer shows more increasing effect on buckling loads compared with the Winkler layer. It is found that the magnitude of buckling load for various values of foundation parameters depends on the strain gradient effect. As previously mentioned, increasing the length scale parameter leads to larger buckling loads for every value of foundation parameters.

Figure 6 illustrates the variation of dimensionless frequency of graphene sheet versus nanoparticle mass for various foundation parameters and nanoparticle location at \(\mu = 0.2 \) and \(\lambda = 0.1 \). It is seen that for every location of nanoparticle, increasing its mass leads to reduction in vibration frequencies. One can also see that the variation of frequency is apparent when the attached mass is
larger than 10^{-21} g. In fact, the mass sensitivity of the nanomechanical mass sensor can reach at least 10^{-21} g. Also, it is found that the effect of nanoparticle location becomes more prominent as the attached mass increases. As the nanoparticle becomes closer to the plate center, the vibration frequency of the nanomechanical mass sensor reduces. It is also clear that the vibration behavior of the nanomechanical mass sensor depends on the values of both the Winkler and Pasternak parameters. In fact, the Pasternak layer provides continuous interaction with the graphene sheet, while the Winkler layer has a discontinuous interaction with the graphene sheet. Increasing the Winkler and Pasternak parameters leads to larger frequencies by enhancing the bending rigidity of graphene sheets. But, the Pasternak layer shows more increasing effect on the frequencies compared with the Winkler layer. Figure 7 depicts the variation of

![Figure 6](image_url)

Fig. 6. Dimensionless frequency of graphene sheet *versus* nanoparticle mass for various foundation parameters and nanoparticle location ($\mu = 0.2, \lambda = 0.1$).
Fig. 7. Dimensionless frequency of graphene sheet *versus* nanoparticle mass for various aspect ratios ($\mu = 0.2$, $\lambda = 0.1$, $K_w = 25$, $K_p = 5$).

dimensionless frequency *versus* attached mass for different length and width parameters and aspect ratios (a/b) at $K_w = 25$, $K_p = 5$, $\mu = 0.2$, $\lambda = 0.1$. It is seen that graphene sheets with higher lengths have larger vibration frequencies. This is because graphene sheets with smaller sizes are more rigid. So, a graphene sheet mass sensor with smaller sizes is more sensitive to the attached mass. In fact, variation of the dimensionless frequency with respect to the attached mass becomes more significant as the graphene sheet size reduces.

Magnetic field effect on vibration frequency of the nano-mechanical mass sensor with respect to the attached mass for different scale parameters is presented in Fig. 8 at $K_w = 25$, $K_p = 5$. It must be noted that in-plane magnetic field has a stiffness-hardening impact on the graphene sheet. In fact, increase of magnetic field intensity leads to large frequencies. As a conclusion, in-plane magnetic field
5. Conclusions

In this paper, the nonlocal strain gradient theory was employed to investigate the buckling behavior of single-layer graphene sheets in the hygro-thermal environment resting on the elastic medium using a refined two-variable plate theory. The theory introduces two scale parameters corresponding to nonlocal and strain gradient effects to capture both stiffness-softening and stiffness-hardening influences. Hamilton’s principle was employed to obtain the governing equation of a nonlocal strain gradient graphene sheet. These equations were solved via...
Galerkin’s method to obtain the buckling loads. It is observed that the buckling load of the graphene sheet reduced with the increase of the nonlocal parameter. In contrast, the buckling load increased with an increase of the length scale parameter, which highlights the stiffness-hardening effect due to the strain gradients. Also, the increase of temperature and moisture degraded the plate stiffness and the buckling loads reduces. All these observations are affected by the number of attached nanoparticles and their mass. However, as the nanoparticle became closer to the plate center, the vibration frequency of the nanomechanical mass sensor reduced.

ACKNOWLEDGEMENTS

The author conveys his sincere thanks to Karunya Institute of Technology and Sciences, Coimbatore, India, for providing financial assistance through KSTG seed money. Also, he is grateful to the reviewers for their wise suggestions.

REFERENCES

Received May 2, 2020; accepted version July 8, 2020.

Published on Creative Common licence CC BY-SA 4.0