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The minimum sample size for a good estimation of the parameters in both three-parameter
Weibull KJc distribution (3P-W) and ASTM E1921 methods was analyzed. Additionally, the
estimations provided by maximum likelihood (ML) and linear regression (LR) were compared.
Fracture toughness sets with different sample sizes were randomly generated following a 3P-W
with parameters corresponding to experimental datasets from the Euro round robin fracture
toughness test. Then, LR and ML were applied to the sets and the parameters were estimated.
Standard deviation (SD) and interquartile range (IQR) were employed to analyze the goodness
of fit. The results of this paper were consistent with the necessity of large sample sizes (over 30)
to find a representative value of the threshold and shape parameters. However, the scale pa-
rameter showed a lower scatter and can be estimated with a smaller sample size (around six
samples), as used in the standard ASTM E1921-19b.
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Notations

b – shape parameter of a three-parameter Weibull,
f(KJc) – density probability function of a three-parameter Weibull distribution,
F (KJc) – cumulative function of a three-parameter Weibull distribution,
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Fi – cumulative probability that corresponds to the i-th value in a set of data,
IQR – interquartile range,
Jc – experimental J-integral at the onset of cleavage fracture,

KJc – critical K value converted from Jc,
KJci – the i-th KJc value in a set of data,

KJcmed – median KJc in a set of data,
Kmin – threshold parameter of a three-parameter Weibull distribution,
K0 – scale parameter of a three-parameter Weibull distribution,
L – likelihood function,

LR – linear regression method,
Master Curve – transition curve defined in the ASTM E1921 standard,

ML – maximum likelihood method,
n – number of specimens in a set of toughness values,
Pi – percentile estimator,
Q1 – first quartile,
Q3 – third quartile,
R2 – coefficient of determination,
SD – standard deviation,
T0 – reference temperature defined in the ASTM E1921 standard,
X – parameter value (Kmin, K0, b),
Xi – estimator value,
X – Xi mean,

3P-W – three-parameter Weibull distribution.

1. Introduction

The fracture mechanics study of structural steel behavior in the ductile-
to-brittle transition has been the subject of many research papers during the
last 50 years. Different fracture mechanics-based criteria can be used in order
to determine fracture toughness for crack instability, even for relatively large
amounts of crack-tip plasticity and previous-to-fracture stable crack growth. The
most used criterion is Jc, which is usually converted to KJc equivalent.

In 1980, Landes and Shaffer [1] observed a large scatter of fracture tough-
ness test results, for a given temperature, related to a specimen size effect, and
proposed a two-parameter Weibull distribution to fit the dispersion in experi-
mental Jc values. In 1984, Landes and McCabe [2] added a third parameter
to the Weibull distribution – the threshold parameter – because the fracture
toughness value predicted by the weakest link model based on a two-parameter
Weibull distribution tendency toward zero as the specimen size becomes very
large. Additionally, Wallin et al. [3] proposed the Wallin, Saario, Törrönen
(WST) model, which also uses a three-parameter Weibull (3P-W) distribution
in terms of K with two of them fixed, and relates the macro-behavior with
micromechanisms [3, 4].
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This combination of scatter and specimen size effect at a given temperature
makes it complex and expensive to obtain the experimental behavior in the whole
transition region. Moreover, there are limitations, given by extensive plasticity
and large stable crack growth at the superior third of the transition, that make it
practically impossible to have a valid sample for specimen sizes normally tested
in the laboratory.

Wallin proposed [5] that the medium toughness values for a one-inch thick-
ness follow a unique curve – the master curve – regardless of the ferritic steel
grade, and the value of the reference temperature T0 is only needed to position it
on the temperature axis. T0 is the temperature at whichKJcmed is 100 MPa ·

√
m,

for a thickness of one inch. Once T0 is obtained, the fracture toughness distri-
bution, consisting in a 3P-W with two of its parameters pre-defined as constant,
can be estimated for different temperatures and sizes [6, 7]. Determining T0 to
calibrate the master curve is specified by ASTM E1921 test method that was
standardized in 1997 and, since then, improved several times [8]. Six valid tests
are sufficient to estimate T0. Recent studies about this subject account for the
T0 estimation based on precracked Charpy and non-standard specimens [9–11],
constraint effects [12–15], and alternatives to the master curve for lower bound
estimations [16, 17]. The goodness of T0 estimation for different temperatures
and sizes was also studied [18, 19]. The estimation of T0 is performed with KJc

values, i.e., values of Jc converted to K-equivalent. More recently, it was shown
that a 3P-W expressed in terms of J could not be converted into an equivalent
3P-W in K [20].

1.1. The 3P-W distribution

The 3P-W distribution, proposed by Weibull [21] in 1951, has a probabil-
ity density function f(KJc) and a cumulative distribution function F (KJc) as
Eqs (1.1) and (1.2) show respectively:

f(KJc;Kmin,K0, b) =
b

K0−Kmin

(
KJc−Kmin

K0−Kmin

)b−1

exp

[
−
(
KJc−Kmin

K0−Kmin

)b]
,(1.1)

F (KJc) = 1− exp

[
−
(
KJc −Kmin

K0 −Kmin

)b]
,(1.2)

where Kmin – threshold parameter, K0 – scale parameter, b – shape parameter.
The methods used for estimating all the three parameters of 3P-W can be

graphical or analytical [22]. The most commonly used graphical method is based
on the Weibull plot [22]. LR and ML are analytical methods, the latter one
being the most widely used because it provides efficient estimators (asymptot-
ically normally distributed and asymptotically unbiased [23, 24]). However, as
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this method does not have a closed-form solution, numerical methods must be
applied. LR and ML are briefly presented in Sec. 2.

Based on limitations related to costs and material availability, especially in ir-
radiated material in the nuclear industry, it is important to test the least number
of specimens necessary to have a good estimation of the statistical parameters.
In this way, the main objective of this paper was to analyze the minimum sample
size (n) that provides a good estimation of each of the parameters in both 3P-W
(estimating the three parameters) and ASTM E1921 (estimating only K0, with
Kmin and b being fixed) methods. Additionally, the estimations provided by ML
and LR, the latter using four percentile estimators, were also compared.

2. Materials and methods

2.1. Method of Linear Regression (LR)

Using algebraic manipulation over Eq. (1.2):

(2.1) ln ln
1

1− F
= b ln (KJc −Kmin)− b ln (K0 −Kmin).

The use of logarithm drives to a linear relationship, where the slope is the
parameter b, making it possible to calculate theK0 parameter from the last term
of the second member in Eq. (2.1). KJci is the i-th KJc value in the sample, and
Fi is its probability based on the percentile estimator used [24]. The square
minimum is used to find the line that best fits the sample, and the coefficient of
determination R2 refers to the fit quality.

2.2. Method of Maximum Likelihood (ML)

In this analytical method, the estimated parameters are those which make
the likelihood function (Eq. (2.2)) a maximum. As the closed-form solution is
not possible to be obtained, the Newton-Raphson method is usually applied.

(2.2) L(Kmin, K0, b) =
n∏
i=1

(KJci, Kmin, K0, b) .

2.3. Data generation

Datasets of around 30 tests each, taken from experimental results correspond-
ing to the Euro round robin fracture toughness test [25], were used in this paper.
3P-W distribution parameters were estimated by using ML. Then, artificial sets
of different sizes were generated from each of the selected datasets to perform
the analyses.
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Table 1 presents the selected datasets, including the estimated parameters.
The quantity of censored values, according to the criterion stated in ASTM
E1921 standard, is also included in the Table. Only datasets with a minimum
number of censored values were chosen for generating simulated new sets to
avoid perturbations in the estimations of 3P-W parameters. Using the estimated
parameters from Table 1, sets of different sizes (n = 5, 6, 8, 10, 20, 30, 40,
50, 60) were generated by applying the Monte Carlo method, based on Donald
E. Knuth’s subtractive random number generator algorithm [26]. In order to get
a repeatable simulation, 3000 sets were generated for each size (n) and dataset.

LR and ML were employed to estimate the parameters from the generated
sets.

Table 1. Datasets of values used for data generation.

Dataset T
[◦C]

Thickness
[mm]

Experimental
dataset size

Censored Kmin

[MPa ·
√

m]
K0

[MPa ·
√

m]
b

# 1 −154 50.00 30 0 29.46 37.78 1.35
# 2 −110 12.50 55 0 33.42 87.65 3.00
# 3 −91 12.50 31 0 45.22 121.88 2.99
# 4 −60 12.50 31 2 80.63 159.47 2.04
# 5 −20 100.00 15 0 129.96 208.18 3.57

The percentile estimators used in the LR method are shown in Eqs (2.3)
to (2.6).

Pi =
i− 0.3

n+ 0.4
,(2.3)

Pi =
i− 0.5

n
,(2.4)

Pi =
i− 3/8

n+ 1/4
,(2.5)

Pi =
i

n+ 1
.(2.6)

2.4. Analysis of scatter

IQR [27] and SD were employed to quantitatively compare the scatter of
the estimated parameter values with a different number of samples. They were
normalized over the parameter that generated the simulated sets (Eqs (2.7)
and (2.8)) and plotted versus the sample size n:
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IQR

X
=
Q3 −Q1

X
,(2.7)

SD

X
=

√
1

3000−1

3000∑
i=1

(
Xi −X

)2
X

,(2.8)

whereX is the value of the generator parameter (Kmin;K0; b),Xi is the estimator
value, X is estimator sample mean, 3000 corresponds to the number of sets
generated, Q1 is the first interquartile, and Q3 is the third interquartile.

Figure 1 shows the procedure for the calculation of IQR/X and SD/X values
for each sample size n.

Fig. 1. Procedure employed in the analysis of scatter.

Boxplots (see Fig. 2) were included to show the scatter presented by each
estimated parameter. In this case, the box itself shows the IQR, and the line

Fig. 2. Boxplot for b, using the ML method. Parameters used in the generation process:
Kmin = 33.42 MPa ·

√
m, K0 = 87.65 MPa ·

√
m and b = 3, corresponding to dataset No. 2.
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inside the box represents the median. Besides, the whiskers correspond to values
that are 1.5 IQR above or below the 3rd and 1st interquartiles, respectively; the
outliers are indicated by black dots and the far outliers by grey dots [23]. The pa-
rameter value used for data generation is indicated as a dashed line.

3. Results

Figures 2 to 4 show examples of boxplots corresponding to the 3000 esti-
mations for each set size of the three parameters, i.e., K0, b, and Kmin. As the
five estimations obtained in each case (four by means of LR and one with ML)

a)

b)

Fig. 3. a) Boxplot for Kmin, LR method, percentile estimator 1, Eq. (2.3); b) histogram
for Kmin with n = 30. Parameters used in the generation process: Kmin = 45.22 MPa ·

√
m,

K0 = 121.88 MPa ·
√

m and b = 2.99, corresponding to dataset No. 3.
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Fig. 4. Boxplot for K0 estimations, using ML method. Parameters used in the gen-
eration process: Kmin = 80.63 MPa ·

√
m, K0 = 159.47 MPa ·

√
m, and b = 2.04,

corresponding to dataset No. 4.

presented similar convergences, only one case is shown. Figure 3b shows the
histogram of Kmin estimations when n = 30 and b > 2.

Figures 5 to 7 and 8 to 10 show examples of the plots of IQR/X and SD/X
for the three Weibull parameters, respectively. The points identified by means of
Est1, Est2, Est3 and Est4 in the figures correspond to the use of Eqs. (2.3) to
(2.6) for estimating the percentiles that generate the estimated parameters used
to calculate IQR/X and SD/X values. In the case of ASTM E1921 standard, this
analysis was performed only to estimate K0 by ML, with the other parameters
fixed (Kmin = 20 MPa ·

√
m and b = 4).

Fig. 5. IQR/Kmin versus set size n. Values generated using Kmin = 45.22 MPa ·
√

m,
K0 = 121.88 MPa ·

√
m and b = 2.99 (dataset No. 3).

Table 2 shows one example of IQR/X and SD/X values, for n = 6 and n = 20,
and the ratio between these values expressed as IQR20/IQR6 and SD20/SD6.
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Fig. 6. IQR/K0 versus set size n, including K0 values estimated by ASTM E1921. Values
generated using Kmin = 45.22 MPa ·

√
m, K0 = 121.88 MPa ·

√
m and b = 2.99 (dataset No. 3).

Fig. 7. IQR/b versus set size n. Values generated using Kmin = 45.22 MPa ·
√

m,
K0 = 121.88 MPa ·

√
m and b = 2.99 (dataset No. 3).

Fig. 8. SD/Kmin versus set size n. Values generated using Kmin = 45.22 MPa ·
√

m,
K0 = 121.88 MPa ·

√
m and b = 2.99 (dataset No. 3).
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Fig. 9. SD/K0 versus set size n, including K0 values estimated by ASTM E1921.
Values generated using Kmin = 45.22 MPa ·

√
m, K0 = 121.88 MPa ·

√
m and b = 2.99

(dataset No. 3).

Fig. 10. SD/b versus set size n. Values generated using Kmin = 45.22 MPa ·
√

m,
K0 = 121.88 MPa ·

√
m, b = 2.99 (dataset No. 3).

Table 2. IQR/X and SD/X ratios between n = 6 and n = 20,
dataset No. 3.

n = 6 n = 20 IQR20/IQR6 n = 6 n = 20 SD20/SD6

IQR/Kmin
LR 1.78 1.126 0.63

SD/Kmin
LR 0.857 0.608 0.71

ML 1.913 1.058 0.55 ML 0.889 0.613 0.69

IQR/K0

LR 0.13 0.072 0.55
SD/K0

LR 0.097 0.052 0.54
ML 0.127 0.073 0.57 ML 0.096 0.054 0.56

E1921 0.124 0.067 0.54 E1921 0.089 0.05 0.56

IQR/b
LR 0.99 0.738 0.75

SD/b
LR 0.753 0.473 0.63

ML 1.621 0.809 0.50 ML 1.159 0.557 0.48
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4. Discussion

Well-known datasets were analyzed in order to study the reliability of the
3P-W estimation of parameters from a statistical point of view. Although ASTM
E1921 allows the use of censoring, and different alternatives were proposed in the
literature [28, 29]. Nevertheless, no censoring was applied in this work to avoid
perturbations in the results by non-valid tests according to ASTM E1921. This
subject, censoring, is part of new research under development. In this paper, five
datasets were selected with few or no censored results. As the datasets are around
30 specimens each, it was assumed that any method would give an acceptable es-
timation of the three Weibull parameters, so ML was employed. Three thousand
sets for each n and each dataset were generated using the Monte Carlo method.
Then, ML and LR (with 4 different estimators) were used to estimate the 3P-W
parameters, and were contrasted and compared. A total number of 3000 sets
were selected to ensure enough repeatability. The three methods of analysis of
goodness of fit were selected for different reasons:

a) Boxplots as they expose the scatter intuitively and provide a good tool to
compare the scatter visually as a function of the set sizes;

b) IQR as it is also an intuitive way to measure the scatter but is not sig-
nificantly affected by asymmetric distributions as the ones observed in the
transition range [30]; and

c) SD is applied because most of the analysis in transition results uses this
indicator as a measure of scatter, although it is not insensitive to asym-
metry.

All the figures from 2 to 10 (as well as all not shown results) depict that,
as expected, scatter decreases as sample size increases. IQR/X greatly decreases
between n = 6 and n = 20. For n = 20 and over, the values of IQR/X do not
show a considerable change of slope. SD/X values follow the same tendency.

SD did not produce qualitative differences between the estimation methods
for the Kmin and K0 estimated values (Figs 8 and 9). Instead, there were differ-
ences for the parameter b, the lowest SD corresponding to the estimator number 4
in LR (Pi = i

n+1), while the highest corresponding to ML (Fig. 10). This pattern
was observed in all the datasets, except for dataset No. 1. According to Wallin
[31], the test temperature of this dataset (−154◦C) corresponds to the lower shelf
region of fracture toughness.

When comparing scatter values between the three parameters, large differ-
ences were observed, independently of the estimation method, the set and the
evaluation method (IQR, SD). K0 produced scatters that were at least one or-
der of magnitude lower than the other two parameters Kmin and b, and a faster
convergence with the number of tests.



206 D.O. ALIAS et al.

Table 2 shows that the estimated Kmin values presented a large scatter for
n = 6, i.e., for Kmin = 40 MPa ·

√
m, being the corresponding IQR between

71 MPa ·
√

m and 77 MPa ·
√

m, depending on whether LR or ML is used in the
estimation procedure.

Similar behavior was present for b values between 0.99 and 1.62. The IQR20/
IQR6 ratio also indicates that the scatter in estimated parameters diminishes
between 50% and 75% when the sample size goes from 6 to 20 for the three
parameters.

Although IQR/X does not consider the medium bias, its numerical value
gives a good indication of the scatter for the expected value, that is the generator
parameter, which is close to the mean value. The IQR/Kmin and IQR/K0 values
are very different from each other. When n = 30, IQR/Kmin is approximately 0.6,
which means that 50% of the results will be between the median ±30%, while
for K0 when n = 10, IQR/K0 is approximately 0.1. This, in turn, means that
50% of the results will be in a range of ±5% with a significantly lower number
of tests. Six tests seem to be sufficient to get a reliable value of K0, while the
estimations of Kmin are imprecise even for n = 30.

In the case of Kmin, a still larger scatter was observed for sets with Weibull
slope (b) greater than 2.

Kmin tends to have negative estimated values as the parameter b increases,
which is physically inconsistent, so the software used in the parameter estimation
imposes in these cases a value of Kmin = 0 (Fig. 3a) [32]. The histogram of Kmin

estimations for n = 30 and b = 2.99, Fig. 3b, shows this effect for all the
estimation methods, However, it was smaller when ML was used.

ASTM E1921 methodology was also analyzed, when possible. Figures 6 and 9
(K0 versus n) include the corresponding values of IQR/K0 and SD/K0, respec-
tively.

ASTM E1921 requires 6 valid tests to estimate K0 and then T0, and this
appears consistent with the results obtained in this paper. However, this does
not apply to the other parameters: Kmin and b, where there is no possibility to
have relatively good estimations using sets as large as 30 specimens. According
to McCabe, Zerbst and Heerens [33], the use of six tests as the minimum
number of valid tests to have a good estimation of T0 is based on a Monte Carlo
simulation of the MPC dataset [34, 35] corresponding to 50 1T-CT specimens
of an A508 class 3 steel at −75◦C. McCabe et al. [33] made 100 trials with
sets of 3, 4, 5, 6, and 7 specimens, and evaluated the 95% confidence and the
standard deviation. They concluded that it appears that six specimen replica-
tions make the best compromise result. In the present case, five sets of around
30 specimens from the Euro dataset were analyzed by a rather different method-
ology as explained above in Sec. 2. For each dataset, the three parameters of
the 3P-W distribution were estimated by ML. Then, 3000 datasets of variable
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size (from n = 5 to n = 60) were generated by the Monte Carlo method and
the parameters of the 3P-W distributions that adjust the data were estimated
by ML and LR (4 estimators) methods. The goodness of fit was evaluated by
IQR and SD. Results confirm with a larger statistical base the requirement of
six valid tests to have a good estimation of K0.

The results obtained justify the use of two fixed parameters as stated by the
standard, not only because of the agreement with experiments but also because
it is impractical to obtain the three parameters with an acceptable confidence
level.

5. Conclusions

A significant reduction of IQR/X and SD/X values was observed as n in-
creases. Particularly, this effect is evident for sample sizes between n = 6 and
n = 20. Using n = 6, IQR/Kmin and IQR/b showed an important scatter.

K0 parameter can be estimated, with low scatter, by using a relatively small
number of specimens, while Kmin and b need more tests (over 30) for their esti-
mation. No matter whether LR or ML was employed, IQR/X or SD/X tendencies
were similar in all cases. The scatter related to K0 estimated values was at least
one order of magnitude smaller than the scatter corresponding to Kmin and b
estimations.

The distribution of Kmin estimated values sometimes showed anomalies, i.e.,
estimate Kmin as zero, depending on b values, although this inconsistency starts
to vanish for b < 2. Moreover, this anomaly is lower when using ML. However,
ML presented more scatter for estimated values of b. In addition to this, for some
of the analyzed cases, ML showed more dispersion estimating Kmin.

The estimation of K0 by ASTM presented a similar tendency to the corre-
sponding K0 value of the 3P-W distribution.

The ASTM E1921 recommendation of two fixed parameters is a good ap-
proximation. From a practical point of view, there is no sense trying to estimate
accurately Kmin or the parameter b because, still even if using a quantity of
tests as large as 30, result reliability will be very poor. It was verified using
more datasets and a larger statistical analysis that six valid tests give a good
compromise to estimate K0.
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