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The Timoshenko beam theory caters for transverse shear deformations, which are more
pronounced in short beams. Previous works were examined, and Hamilton’s principle was used
in deriving the governing equation. This research considers two dimensions (2-D): heat and
displacement response. A more comprehensive mathematical expression that incorporates this
2-D model on the vibration of a coupled Timoshenko thermoelastic beam and axial deformation
effect is formulated. The significance of this model will be expressed through its finite element
method (FEM) formulation. The results compared favourably with those of previous works.
It was re-established that the amplitude of deflections, as well as cross-sectional rotations,
increases considerably as the aspect ratio of the beam decreases. In this way, for larger aspect
ratios, the response of the beam is like the quasi-static heating condition. This is expected since
the increase in the aspect ratio of the beam reduces its structural stiffness and consequently its
natural frequencies. So, the amplitude and temporal period of its vibrations become greater.
The beam under the applied thermal loading experiences thermally-induced vibrations. Also,
the dynamic solution is substantially influenced by the coupling between strain and tempera-
ture fields. The results also reveal that the aspect ratio of the beam could have a significant
impact on the vibratory response of the beam. Specifically, it is proportional to the amplitude
and temporal period of the thermally-induced vibrations of the beam.
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1. Introduction

One of the most vital structural elements used in engineering is the beam.
The application domain of beams ranges from civil or structural engineering
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to weapons technology, space exploration and aeronautical engineering. Beams
have been studied extensively by researchers and engineers because of their im-
portance in structures. Different solution algorithms have been proposed to study
both the dynamic and static behaviour of beams. A numerical method for the
behaviour of functionally graded beams under vibration and buckling conditions
with different boundary conditions has been studied by Zhang and Wang [1],
Manolis and Beskos [2], Manoach and Ribeiro [3], Giunta et al. [4], Wen
and Yi [5], and Zhang et al. [6]. At the same time, analytical solutions have been
employed by Trinh et al. [7], Boley [8], and Kidawa-Kukla [9, 10]. Three
key distinct cases of thermal increase, namely uniform, linear and nonlinear,
were considered in most of these studies. Their results show a marked difference
between the results of the temperature-dependent solutions and the independent
ones. In general, their model has shown to be effective in the analysis of vibration
and buckling under the thermal and the mechanical load of functionally graded
beams.

Several works [11–13] have focused on the Timoshenko beam theory assump-
tion to solve beam problems. In the same way, thermoelastic beams have at-
tracted the attention of researchers in recent times [14–19]. When an elastic
material is subjected to cyclic deformations, there tends to be a thermoelastic
dissipation [20], especially when the period of an exciting cycle and the material
relaxation are close to each other [21–23]. This phenomenon is prominent during
the vibrations of an elastic beam. There is a significant transformation of the
mechanical work into elastic energy. However, some of the works left convert to
thermal energy.

As bending occurs in engineering structures, there is extension and cooling on
one side, while compression and heating occur on the other side [24]. Temperature
is non-homogeneous, as such heat is being transferred from the area of higher
heat flux to a lower region. This heat transfer causes an entropy in the system
corresponding to the second law of thermodynamics, and lastly the loss of the
mechanical energy in the form of heat. The loss in mechanical energy could come
from several mechanisms, namely: energy to the structure supports [25], loss to
the internal energy [26], loss due to air damping [27], and notably, thermoelastic
damping [28–30].

Problems arising from thermally induced vibration in beams and other struc-
tures have been an age-long issue [31–33]. Some engineering applications such
as micro-electromechanical systems (MEMS), high-speed aircraft, reactor ves-
sels and turbines also face a thermally induced vibration-related problem. In
the literature, two types of models have been remarkable to identify the vibra-
tional problems of the beam structures that are thermally induced; they are
uncoupled and coupled models [3, 10, 34, 35]. The uncoupled model is adopted
in the analysis of Euler-Bernoulli beam theory and eliminates the coupling ef-
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fect of the displacement field in the thermal conduction equation. On the other
hand, the coupled model takes into account the coupling effect of the displace-
ment field in the thermal conduction equation, and it is prominent in the study
of the Timoshenko beam model.

Several works have employed a coupled model to analyse thermally induced
vibration of a Timoshenko beam. Manoach et al. [36] investigated the effect
of heat on the vibration of beams. The thermal and mechanical loads consid-
ered the impact of the beam dynamics, and a numerical method for solving the
thermomechanical problem was demonstrated. The composite beam was stud-
ied under three different heat pulses: unheated, small heat pulse and large heat
pulse. The oscillations in the results varied from having the response of the
unheated beam excited by the mechanical loading close to the first natural fre-
quency to getting irregular behaviour. This shows that the heat pulse can lead
to different dynamics for the nonlinear beam. To study the coupled, thermoe-
lastic and significant amplitude vibration of a Timoshenko beam exposed to
the short heat flux and harmonic mechanical load, Manoach and Ribeiro [3]
adopted an accurate and time-saving computational approach. The dynamic be-
haviour of a Timoshenko beam under a step heat flux at the top of the medium
area was investigated by Massalas and Kalpakidis [34]. The thickness di-
rections of the beam were linearly varied, and the heat conduction equation
in 2-D condensed to one component. Based on this concept, Guo et al. [35]
studied an axially moving beam under coupled thermoelastic conditions. They
employed the differential quadrature method to find the frequency and study
the divergence and flutter of the beam. It was discovered that the type of in-
stability and the speed at which the beam moves are functions of the ther-
moelastic factor, the length, the height and the boundary condition(s) of the
beam.

Efforts towards finding a solution to the resulting model from the thermoelas-
tic effect have been dominated by an integral transform, which is very laborious.
The thermoelastic models are functions in both space (x) and time (t) domain.
Attempts at employing the numerical methods via the finite element method
have also resulted in eliminating the time component using the Laplace trans-
form. Afterward, another numerical scheme to obtain the final solution in the
real-time domain through the inverse Laplace transform. Again, this is quite
painstaking.

The present study aims to obtain the steady-state and dynamic responses of
a coupled thermoelastic Timoshenko beam acted upon by an external force and
heat flux (see Fig. 1) using the FEM with its backend, finite difference method
(FDM). The set goal will be achieved through the formulation of the governing
differential equation together with its finite element model. In addition to the as-
sumption of Massalas and Kalpakidis [34], the effect of axial deformation on
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the entire beam responses is considered. Lastly, the static and dynamic responses
will be determined using the formulated FEM.

2. Methodology

2.1. Thermoelastic Timoshenko beam

In practical situations, the axial strain in the thickness direction εxx is not
usually constrained to be zero, but the normal tractions at the top and bottom
of the beam are zero or its equivalence. Conversely, if width is much less than
length, the stress component in the direction of width is zero. This means σxy,
σyy, and σzy are all zero. This research work proceeds against this backdrop and
with reference to the thermal strain that is prominent with a 1-D constitutive
model.

In this problem, we consider a beam of length L and height h with range
values of ≤ x ≤ L and −h

2 ≤ z ≤ h
2 along the length and height, respectively

(Fig. 1). A heat flux of q(x, z, t) is applied to the surface z = h
2 , while a transverse

force g(x, z, t) is applied to the surface z = h
2 and an axial force f(x, z, t) is

applied to the surface z = 0.

Fig. 1. Fixed Timoshenko beam under harmonic heat flux and distributed load.

From the theory of stress, the strain energy U for an elastic material with
small strain is given within a region of Ω as [37]:

(2.1) U =
1

2

ˆ

Ω

(σijεij) dΩ.

The notation εij represents the component of the strain tensor ε that could be
separated into two parts, such as:

(2.2) εij = εeij + εTij ,

where εTij and ε
e
ij are the thermal and elastic strains respectively given as [38]:

(2.3) εTij = α∆Θδij , εeij =
1

2
(ui,j + uj,i) .
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In Eq. (2.3), α is the coefficient of linear expansion, ∆Θ is the temperature
change of the solid, and ui,j denotes the displacement gradient. The symmetric
point of curvature tensor χ is given as [37]:

(2.4) χij =
1

2
(θi,j + θj,i),

and

(2.5) θi =
1

2
(curl(u))i

represents the component of the infinitesimal notation vector θ. The displace-
ment of a Timoshenko beam is given by

(2.6)
ux(x, y, z, t) = u(x, z, t) + zφx(x, t), uy(x, y, z, t) = 0,

uz(x, y, z, t) = w(z, t),

where (x, y, z, t) represent the coordinates of a point in the axes of the beam at
a time t. While ux, uy, and uz are the displacement in the Cartesian coordinate.
More so, u(x, z, t) stands for the axial displacement at the neutral axis. The
notation φx is the angle of the beam cross-section about the z-axis, and w is
the beam transverse displacement in the z-direction. Substituting Eq. (2.6) into
Eq. (2.3) gives the simplified Green-Lagrange strain tensor components as:

(2.7) εxx =
∂u

∂x
+ z

∂φx
∂x

, εzx = εxz =
1

2

(
φx +

∂w

∂x

)
,

where u is the n-plane displacement of particles in the x-direction. Since the
shear strain εxz is not constant along the beam cross-section, it is important to
introduce a correction factor ks. Hence, Eq. (2.7) becomes

(2.8) εxz =
1

2
ks

(
φx +

∂w

∂x

)
.

The constitutive relation for an isotropic elastic material is given as [38]:

(2.9) σij = λtrεδij + 2µεij .

As a matter of fact, in real life situation, the axial strain in the thickness
direction εxx is not constrained to be zero. However, the normal tractions at the
bottom and top of the beam are zero or its equivalence. On the other hand, if
width is much less than length, the stress component in the direction of width is
zero. That is to say σxy, σyy, and σzy are all zero. Against this backdrop and with
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reference to the thermal strain that is prominent with 1-D constitutive relation
[39] that reduces the constitutive relation as a function of εxx and ∆Θ:

(2.10) σxx = Eεxx − η∆Θ,

where η is the thermal modulus given as η = Eα
(1−2ν) . Here α, E, ν, and ∆Θ are

the thermal expansion coefficient, Young’s modulus, Poisson’s ratio, and tem-
perature increase of the solid, respectively. By considering Eqs (2.7) and (2.10),
we will arrive at the constitutive equation relating to stress, displacement, and
thermal modulus, that is:

(2.11) σxx = E

(
∂u

∂x
+ z

∂φx
∂x

)
− η∆Θ.

After taking the variation of Eq. (2.1), it becomes:

(2.12) ∂U =

ˆ

Ω

(σxxδεxx + 2σxzδεxz) dΩ

=

ˆ

L

(
−Mxx

∂(δφx)

∂x
+Qzz

(
−δφx +

∂(δφx)

∂x

))
dL,

where Mxx =

ˆ

A

σxx dA is the bending moment and Qzz = ks

ˆ

A

σzz dA is the

shear force. If we note that at the boundaries, the variations are zero, then after
integrating Eq. (2.12) by parts, we have:

(2.13)
ˆ

L

((
∂Mxx

∂x
−Qzz

)
δφx −

∂Qzz
∂x

δw

)
dL = 0.

From the lemma of the calculus of variation, Eq. (2.13) becomes

(2.14)
∂Nxx

∂x
= 0,

∂Mxx

∂x
−Qzz = 0,

∂Qzz
∂x

= 0.

Considering the beam to be isotropic, uniform, and linearly elastic transforms
Eqs (2.13) and (2.14) into Eqs (2.15)–(2.17):

EA
∂2u

∂x2
− ∂NA

∂x
= 0,(2.15)

∂

∂x

(
ksAG

∂w

∂x

)
− ksAG

∂φx
∂x

= 0,(2.16)

∂

∂x

(
EI

∂φx
∂x

)
− ksAG

(
∂w

∂x
+ φx

)
− ∂MB

∂x
= 0,(2.17)
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where ksAG and EI are the shear and bending modulus, respectively. The quan-
tities NA and MB stand for the thermal axial force and bending moment, re-
spectively denoted as:

(2.18) NA = bη

+h
2ˆ

−h
2

Θ dz = 0, MB = bη

h
2ˆ

−h
2

Θz dz.

2.2. Dynamic equation for a Timoshenko beam

The equation of motion for a Timoshenko beam is derived by applying Hamil-
ton’s principle [40]

(2.19) δ

t2ˆ

t1

(T +W − U) dt = 0.

Here, the kinetic energy T is

(2.20) T =
1

2

ˆ

Ω

ρ

((
∂ux
∂t

)2

+

(
∂uy
∂t

)2

+

(
∂uz
∂t

)2
)
dΩ

=
1

2

ˆ L

0

ˆ

A

ρ

((
∂u

∂t
+ z

∂φx
∂t

)2

+

(
∂w

∂t

)2
)
dA dx.

By introducing I =

ˆ

A

z2 dA, ρA =

ˆ

A

ρ dA and ρI =

ˆ

A

ρz2 dA into Eq. (2.20),

we have:

(2.21) T =
1

2

L̂

0

(
ρA

((
∂u

∂t

)2

+

(
∂w

∂t

)2
)

+ ρI

(
∂φx
∂t

)2
)
dx,

where ρ is the density of the beam material, and I stands for the moment of
inertia of the cross-section of the beam. If damping force proportional to the
velocity is assumed, then Eqs (2.15)–(2.17) become Eqs (2.22)–(2.24):

EA
∂2u

∂x2
− ρA∂

2u

∂t2
− ∂NA

∂x
= 0,(2.22)

ρA
∂2w

∂t2
− ∂

∂x

(
ksAG

(
∂w

∂x
+ φx

))
= 0,(2.23)
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(2.24) ρI
∂2φX
∂t2

+ ξ(x)
∂w

∂t
− ∂

∂x

(
EI

∂φx
∂x

)
+ ksAG

(
∂w

∂x
+ φx

)
+
∂MB

∂x
= 0,

where ξ(x) is characteristic variable for rotational and translational damping,
and ρA and ρI represent the mass per unit length and rotational inertia of the
beam, respectively.

2.3. Thermal transport along the beam axis

The thermoelastic equation for the heat conduction through the beam could
be written as [38]:

(2.25) ρcv
∂

∂t

(
Θ + τ0

∂Θ

∂t

)
= kc

∂2Θ

∂xi∂xi
− ηΘ0

∂

∂t

(
∂u

∂xi
+
∂φx
∂xi

)
,

whereΘ0 is the initial temperature on beam periphery, while cv, kc, and τ0 are the
heat capacity per unit volume, the thermal conductivity of the beam material and
thermal relaxation time, respectively. By substituting the displacement relation
into Eq. (2.25), we have

(2.26) ρcv

(
∂Θ

∂t
+ τ0

∂2Θ

∂t2

)
= kc

(
∂2Θ

∂x2
+
∂2Θ

∂z2

)
− ηΘ0

(
∂2u

∂t∂x
+ z

∂2φx
∂t∂x

)
.

Multiplying Eqs (2.26) by bηz and integrating with respect to z within the
limit of −h

2 and +h
2 produces

(2.27) ρcvbη

+h
2ˆ

−h
2

(
∂Θ

∂t
+ τ0

∂2Θ

∂t2

)
z dz = kcbη

+h
2ˆ

−h
2

(
∂2Θ

∂x2
+
∂2Θ

∂z2

)
z dz

− bΘ0η
2

+h
2ˆ

−h
2

(
∂2u

∂t∂x
z +

∂2φx
∂t∂x

z2
)
dz

where it could be shown from Eq. (2.27) that

(2.28) MB = bη

+h
2ˆ

−h
2

Θz dz = − b

rx
η

+h
2ˆ

−h
2

∂2Θ

∂z2
z dz.

On the consideration that the temperature increases along the direction of
the thickness h and following Eqs (2.18), (2.25), and (2.28), the heat conduction
equation is derived as:
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(2.29) ρcv

(
∂MB

∂t
+ τ0

∂2MB

∂t2

)
= kc

∂2MB

∂x2
− 1

rx
MB

− ηΘ0

(
∂2u

∂t∂x
+ z

∂2φx
∂t∂x

)
− q(x, z, t),

where rx = h2

12 is the radius of gyration of the beam cross-section and q(x, z, t)
is the heat flux.

2.4. The coupled thermoelastic equation

By introducing the dimensionless terms:

(2.30)

x =
x

L
, z =

z

L
, t =

t

L2

√
EI

ρA
,

ψA = NA, ψB = MB, φx = φx,

w =
w

h
, u =

u

h
, ς0 =

cvh
2

kcL2

√
EIρ

A
,

µ =
ksGAL2

EI
, β0 =

Eα2Θ0

ρcv
, r0 =

ς0
rx

the normalized forms of Eqs (2.19)–(2.21) and (2.29) become

(2.31)

−ρA∂
2u

∂t2
+EA

∂2u

∂x2
− ∂ψA

∂x
=0,

−ρA∂
2w

∂t2
−ξT (x)

∂w

∂t
+
∂

∂x

(
ksAG

(
∂w

∂x
+φx

))
=0,

−ρ I ∂
2φx
∂t2

+
∂

∂x

(
EI

∂φx
∂x

)
−ξR(x)

∂w

∂t
−ksAG

(
∂w

∂x
+φx

)
− ∂ψB

∂x
=0,

−ρcv
(
∂ψB
∂t

+τ0
∂2ψB
∂t2

)
+kc

∂2ψB
∂x2

− 1

rx
ψB+zηΘ0

(
u+

∂2φx
∂t∂x

)
−q(x, t)=0.

Here, µ represents the shear stiffness parameter, and β0 characterises the
thermomechanical coupling parameter. Supposing the beam is under the action
of a time-harmonic excitation, the axial extension, the transverse displacement,
the rotation angle, the shear deformation, the temperature and heat flux are
expressed as follows:
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(2.32)

u(x, t) = û(x) eiωt, w(x, t) = ŵ(x) eiωt,

φx(x, t) = φ̂x(x) eiωt, ψA(x, t) = ψ̂A(x) eiωt,

ψB(x, t) = ψ̂B(x) eiωt.

Substituting Eq. (2.32) into Eq. (2.31) leads to

(2.33)

ω2û+ û′′ − ψ̂′A = 0,

ω2ŵ + µ
(
ŵ′′ + φ̂′x

)
= 0,

φ
′′
x + ω2φ̂x − i ω ξ ŵ − µ

(
ŵ′ + φx

)
− ψ̂′B = 0,

ψ̂′′B + ς0

(
i ω ψ̂B − ω2 τ0 ψ̂B

)
− r0 ψB + i ω ς0 β0

(
û+ z φ̂′x

)
+ q ς0 = 0.

2.5. Stiffness, mass, and damping matrices

In the formulation of the stiffness, mass, and damping matrices, the matrices
from the linear varying curvature as a result of bending and constant curvature
due to shear are considered. The beam will be described relative to the axial
displacement (u1, u4) and transverse displacement (w2, w3, w5, w6), as shown in
Fig. 2.

Fig. 2. A beam element showing the nodal displacements at both ends.

These deformations change with time according to the following equations:

u(x, t) =
2∑

k=1

N(e)k(x)uk(t) with u1, u2 ≡ u1, u4,(2.34)

w(x, t) =
4∑

k=1

N(b)k(x)wk(t) +
4∑

k=1

N(s)k(x)φxk(t),(2.35)

with w1, w2, w3, w4 ≡ w2, w3, w5, w6,

ψB(x, t) =

4∑
k=1

Nk(x)ψk(t)ψB(x, t) =

4∑
k=1

Nk(x)ψk(t),(2.36)
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where N(e), N(b), N(s), N are the shape functions expressed in the Appendix.
The subscript k represents the quantity evaluated at the k-th element of the
discretised beam. The element stiffness matrix for the thermoelastic beam could
now be formulated by employing thermoelastic strain energy in the form:

(2.37) U =
1

2

L̂

0

EA

(
2∑

k=1

N ′(a)k(x)uk

)2
dx+

1

2

L̂

0

EI

(
4∑

k=1

N ′′(b)k(x)wk

)2
dx

+
1

2

L̂

0

κGA

(
4∑

k=1

N ′(s)k(x)φxk

)2
dx+

1

2

L̂

0

kc

(
4∑

k=1

N ′k(x)φxk

)2
dx

giving the stiffness coefficient in extension as:

(2.38) K(e)
ij =

∂

∂u1

∂

∂uj

1

2

L̂

0

EA

(
2∑

k=1

N ′(e)k(x)uk

)2
dx

and that in bending, shear, and thermal as:

(2.39) K(b)
ij =

∂

∂wi

∂

∂wj

1

2

L̂

0

EI

(
4∑

k=1

N ′′(b)k(x)wk

)2
dx

+
∂

∂mi

∂

∂mj

1

2

L̂

0

kc

(
4∑

k=1

N ′k(x)mk

)2
dx

+
∂

∂φxi

∂

∂φxj

1

2

L̂

0

κGA

(
4∑

k=1

N ′(s)k(x)φxk

)2
dx.

By adopting the same principle as above, the kinetic energy associated with
the extension is derived as:

(2.40) T =
∂

∂u̇1

∂

∂u̇j

1

2

L̂

0

ρA

(
2∑

k=1

N(e)k(x)u̇k

)2
dx.

3. Results and discussion

The preceding solutions will be demonstrated numerically for values of mate-
rial constants equivalent to aluminum alloy. The beam geometry with the bound-
ary condition and a unit step thermal loading applied to the beam are shown
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in Figs 3 and 4, respectively. As a validation study to the present work, the re-
sults presented here are compared with the results presented in Massalas and
Kalpakidis [34]. They gave an analytical solution for an aluminum beam with
an initial temperature, and the beam was subjected to a step heat flux.

Fig. 3. The beam geometry with length L, breadth b, and height h having the clamped
– clamped boundary condition.

Fig. 4. A unit step heat flux applied at time t = 0.

This study is conducted for deflection and cross-sectional rotation at the
midpoint of the beam and the temperature variation in the thickness direction
of the beam. Figure 5 shows the deflection history of the heated beam and the
disparity of the deflection when the coupling between temperature and strain
fields is considered. From the results presented in Fig. 5, it can be seen that
the solution oscillates about the quasi-static response, establishing a steady-
state mode of vibration and decays with increasing time. Figure 6 indicates the
history of cross-sectional rotation of the heated beam. The variation in Fig. 6
is analogous to that of deflection. Similarly, the history of temperature change
at the midpoint of the heated beam is shown in Fig. 7. These results are in
agreement with those from Massalas and Kalpakidis [34], thereby validating
the formulations and methods used in the present work.

Figure 8 shows the deflection history of the beam. The result depicts the
thermally-induced vibrations for the beam under the applied thermal loading.
It is observed that the amplitude of deflections increases considerably as the as-
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Fig. 5. Deflection (w) history at the midpoint of the thermoelastic Timoshenko beam.

Fig. 6. Rotation history at the midpoint of the thermoelastic Timoshenko beam.

pect ratio of the beam decreases. In this way, for larger aspect ratios, the response
of the beam is similar to the quasi-static heating condition. This is expectable
since the increase in the aspect ratio of the beam reduces its structural stiffness
and consequently its natural frequencies. So, the amplitude and temporal period
of its vibrations become greater.
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Fig. 7. Temperature variation of the thermoelastic Timoshenko beam.

Fig. 8. Lateral deflection history at the midpoint of the beam for different aspect ratios
with respect to base ratio r.

The conclusion from the results above is that the inertia plays a vital role
in the deflection, rotation and temperature variation of the thermoelastic Timo-
shenko beam. Also, the dynamic solution is considerably affected by the coupling
between temperature and strain fields.
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4. Conclusion

This work presented a finite element method for the generalised coupled
thermoelastic response of a Timoshenko beam subjected to thermal loading.
The beam follows the shear deformation model of the first order and Hooke’s
law, respectively, for its displacement field and constitutive behaviour. Tem-
perature variations through the beam have been considered to be governed by
the Lord-Shulman energy equation. Displacement and temperature variations
through the beam have been assumed to be infinitesimal. The FEM was applied
to solve the problem in the space domain, whereas the FDM dealt with the time-
domain feature. The problem wassolved, and its results have been validated with
the known result in the literature. The beam under the applied thermal load-
ing experiences thermally-induced vibrations. It is found that the aspect ratio
of the beam could have a considerable effect on the vibratory response of the
beam. Specifically, it is proportional to the amplitude and temporal period of
thermally-induced vibrations of the beam.

The simplicity in implementing the solution algorithm and the completeness
in the formulation of the governing equation make this work a benchmark for
subsequent works in this area. Further research could consider geometric nonli-
nearity and/or nonlinear material constitutive models of the thermoelastic beam.

Appendix
Shape functions for various components in Eqs (2.34)–(2.36)

The shape functions for the extension of the neutral axis are:

N(e)1 = 1− x,

N(e)4 = x.

The bending components of the shape functions are:

N(b)2 =
1

Ψ + 1
(1− 3x2 + 2x3),

N(b)3 =
L

Ψ + 1

(
x(1 + Ψ)− 2x2 + x3 − Ψ

2
x2
)
,

N(b)5 =
1

Ψ + 1
(3x2 − 2x3),

N(b)6 = − L

Ψ + 1

(
x2 − x3 − Ψ

2
x2
)
,
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The shear components of the shape functions are:

N(s)2 =
Ψ

Ψ + 1
(1− x),

N(s)3 = − ΨL

Ψ + 1

(
1

2
x

)
,

N =
1

Ψ + 1
(3x2 − 2x3),

N(s)6 = − ΨL

Ψ + 1

(
1

2
x

)
.

The shape functions for a Timoshenko beam that is used to approximate the
heat flux are:

N2 =
1

Ψ + 1
(1− 3x2 + 2x3 + (1− x)Ψ),

N3 =
L

Ψ + 1

(
x− 2x2 + x3 − Ψ

2

(
x2 − x

))
,

N5 =
1

Ψ + 1

(
3x2 − 2x3 + Ψx

)
,

N6 = − L

Ψ + 1

(
x2 − x3 +

Ψ

2

(
x− x2

))
.

Here,

Ψ =
12EI

GAL2 represents the ratio of bending to shear stiffnesses,

x =
x

L
.
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