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The paper presents the problem of damage detection in thin plates while considering the
influence of static and dynamic characteristics, especially with regard to the modes of vibration
as well as the excitation by static loads. The problem of Kirchhoff plate bending is described and
solved by the Boundary Element Method (BEM). Rectangular plates supported on boundary
or plates supported on boundary and resting on the internal columns are examined. A defect
is introduced by the additional edges forming a crack in the plate domain. The analyses of
static and dynamic structural responses are carried out with the use of Discrete Wavelet
Transform (DWT). Signal decomposition according to the Mallat pyramid algorithm is applied.
To obtain a more adequate input function subjected to DWT the white noise disturbing the
signal is considered together with the structural response. In the dynamic experiments the plate
undergoes vibrations similar to natural modes. The measured variables are static deflections
and vertical displacement amplitudes. All of them are established at internal collocation points
distributed alongside the line parallel to selected plate edge.
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1. Introduction

The presented work is dedicated to defects localization, provided that they ex-
ist, in the plate structure. This problem has been investigated by many authors,
who presented some approaches allowing to locate a damaged part of a struc-
ture. Mróz and Garstecki proposed in [1] conditions of optimal loading for
designing and identification of the structures. Dems and Mróz described local-
ization of damage in beams and plates by introducing a parameter dependent
on frequency changes [2]. Heat transfer and inverse analysis were the base of the
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response signals for Ziopaja, Pozorski and Garstecki [3], Boumechra [4]
as well as Knitter-Piątkowska and Garbowski [5], respectively. The signal
processing method, namely wavelet transformation (WT) [6] also in its discrete
form (DWT) [7] can be a very useful tool to localization and detection of de-
fects. WT and especially DWT can properly indicate parts of a structure in
which damage is possible to exist, wherein the information about undamaged
structure is not necessary to perform the analysis of the response signal. A gen-
eral review of the methods used for structural health monitoring (SHM) and
damage detections has been presented by An et al. [8].

The proposed numerical analysis is carried out while using static or dynamic
signal responses of the structure. The plate bending is described and solved by
the Boundary Element Method (BEM) in direct and modified form proposed
by Guminiak [9, 10]. Rectangular plates supported on boundary and resting
on internal column supports are considered. Defects are modelled as the slots
near the plate boundary and introduced as additional free edges. Vertical dis-
placements are taken into consideration as a structural response. In statics, the
surface of deflection (2-D decomposition of the response signal) is analysed, for
dynamics – the deflection line parallel to one of the boundaries and consistent
with the selected mode of vibration is examined (1-D decomposition of the re-
sponse signal). Decomposition of the response signal is carried out using DWT
with Daubechies 4, 6, 8, Coiflet 6 and B-spline 1 families of wavelets. The prob-
lem of damage detection in plates supported on boundary and inside its domain
has been described in detail and illustrated e.g. in the work [11]. This paper is
the extension of earlier works [7, 11, 12] in which only one-dimensional DWT
was applied.

2. Theoretical consideration on Discrete Wavelet Transform

Below, the basic assumptions of DWT for 1-D and 2-D analysis of signal
will be briefly presented. The theory of the wavelet transformation (WT) was
presented in many papers, e.g. [13].

Let the function ψ(t), called the wavelet function (mother function), be con-
tinuous and belong to the field of L2(R). Additionally, the function ψ(t) must
satisfy the condition of admissibility [12]. The mother function may be real or
complex-valued. The real-valued wavelets will be applied in the considered cases.
For signal decomposition the set of wavelets (wavelet family) is needed. This set
of functions is obtained by translating and scaling the function ψ what can be
written by means of the relation:

(2.1) ψa,b =
1√
|a|
ψ

(
t− b
a

)
,
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where t denotes a time or space coordinate, a is the scale parameter and b trans-
lation parameter. The parameters a and b take real values (a, b ∈ (R)) and addi-
tionally a 6= 0. The element |a|−1/2 expresses the scale factor which ensures the
constant wavelet energy regardless of the scale, it means i.e. ‖ψa,b‖ = ‖ψ‖ = 1.

In the current analysis of plate bending, Discrete Wavelet Transform (DWT)
plays the leading role. For this approach, the wavelet family can be obtained by
substitution a = 1/2j and b = k/2j in the Eq. (2.1) what leads to the following
relation [12]:

(2.2) ψj,k (t) = 2(j/2)ψ
(
2jt− k

)
,

in which k and j are scale and translation parameters, respectively. The inter-
pretation of these parameters for the simplest Haar wavelet is illustrated e.g.
in [15].

The Discrete Wavelet Transformation (DWT) is expressed by the equa-
tion [14]

(2.3) Wf(j, k) = 2j/2
∝̂

−∝

f(t)ψ
(
2jt− k

)
dt = 〈f(t), ψj,k〉,

where f(t) is the transformed response signal.
The scalar product of the response signal f(t) and the wavelet function allows

one to find the set of wavelet coefficients dj,k = 〈f(t), ψj,k〉 therefore enables the
discrete signal to be represented in the form of the combination of linear wavelet
functions ψj,k with wavelet coefficients dj,k:

(2.4) f(t) =

J−1∑
j=0

∑
k

dj,kψj,k(t),

wherein the number of discrete values (number of input data) is 2J .
To perform the multi-resolution analysis the scaling wavelet function (father

function) ϕj,k(t) is needed, which has the form

(2.5) ϕj,k(t) = 2j/2ϕ
(
2jt− k

)
.

The scaling function ϕj,k(t) should limit the unit area and has the unit energy.
It fulfils the orthogonality and the translation conditions as well. This leads to
the following relations respectively

(2.6)
∝̂

−∝

ϕ(t) dt = 1,
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〈ϕ(t), ϕ(t)〉 =

∝̂

−∝

|ϕ(t)|2 dt = 1,(2.7)

〈ϕ(t), ϕ(t− n)〉 = 0, n 6= 0.(2.8)

The function f(t) is developed in series using the basic (mother) function
ψ(t) and the scaling (father) function ϕ(t) [14]

(2.9) f(t) =

∝∑
k=−∝

aj,kϕj,k(t) +

∝∑
k=−∝

∝∑
j=0

dj,kψj,k(t),

where aj,k are the coefficients of the scaling wavelet, which are determined as
follows

(2.10) aj,k = 〈f(t), ϕj,k〉 .

The wavelet ψ(t) has a band-pass character, therefore coefficients dj,k contain
information about higher frequencies, i.e. details and coefficients aj,k contain low
pass information with a constant component. Its result is a signal approximation.

For 1-D analysis, the discrete signal decomposition can be written according
to the Mallat pyramid algorithm in the form [13]:

(2.11) fJ = SJ +DJ + ...+Dn + ...+D1, n = J − j,

where each component in signal representation is associated with a specific range
of frequency and provides information at the scale level (j = 1, ..., J). The dis-
crete parameter J describes the level of a multi-resolution analysis (MRA), SJ is
the smooth signal representation, Dn and Sn are the details- and rough- parts of
the signal and D1 corresponds to the most detailed representation of the signal.

Fig. 1. Mallat pyramid algorithm for 1-D analysis.
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To fulfil the dyadic requirements of DWT the function fJ must be approximated
by N = 2J discrete values. The multi-resolution 1-D analysis according to the
Mallat pyramid algorithm is illustrated in Fig. 1 and e.g. in papers [11–14]. In
the current analysis of the defect detection, Daubechies, Coiflet and B-spline sets
of wavelets will be applied. These families of wavelets are orthogonal, continuous
and have a compact support.

For the 2-D analysis of the signal the Mallat pyramid algorithm has the
following form [13]:

(2.12) F (x, y) = SJ(x, y) +
J∑
j=1

DV
j (x, y) +

J∑
j=1

DH
j (x, y) +

J∑
j=1

DD
j (x, y),

where SJ(x, y) is a smooth signal representation,DV
j (x, y),DH

j (x, y) andDD
j (x, y)

are details and rough parts of the signal respectively, j is the level of decompo-
sition and J is the level of MRA. The multi-resolution 2-D analysis according to
the Mallat pyramid algorithm is illustrated in Fig. 2.

Fig. 2. Mallat pyramid algorithm for 2-D analysis.

For the dynamic analysis the sets of Daubechies 4 and 8 wavelets with 1-D
procedure of DWT will be applied. In the static analysis the set of Coiflet 4
together with 2-D procedure of DWT and B-spline 1 wavelet will be used. In the
dynamic analysis the sets of B-spline 1, Daubechies 5 and Coiflet 6 together with
2-D procedure of DWT and B-spline 1 wavelet will be used. Daubechies wavelets
are asymmetrical and Coiflet wavelets are nearly symmetric. Both types have
sharp edges and do not require a large number of coefficients hence they are often
applied to solve a broad range of problems e.g. image analysis or defect detection.
The order of Daubechies wavelet family functions is in the range of even numbers
between 2 and 20. The Coiflet family of functions accepts the even integers 6, 12,
18, 24, and 30. The Daubechies wavelet of the second order corresponds to the
simplest Haar wavelet. Basic and scaling functions of Daubechies 4 and Coilflet 6
wavelets are presented in Fig. 3.
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a) b)

c) d)

Fig. 3. Basis function (mother): a) Daubechies 4, c) Coiflet 6 wavelet and scaling function
(father), b) Daubechies 4, and d) Coiflet 6 wavelet.

3. Introduction of measurement errors in numerical data

Measurement (observational) error is the difference between the measured
value of quantity and its true value [16]. The measurement errors are an in-
evitable element of any real experiment and may be caused e.g. by measuring
devices or methods, miscalculations or the influence of the environment on the
previously mentioned causes. The example of a randomly generated error signal
as a white noise is illustrated in Fig. 4 [12].

Fig. 4. White noise, values from – 0.5 to 0.5.

To investigate the efficiency of DWT in damage detection during computer
simulations, white noise was added to the signal. To adjust the scale of the
inaccuracy to the intensity of the analysed response signal of the structure, white
noise has been multiplied by the constant number corresponding to the order of
designated signal magnitude.
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4. Problem formulation of plate bending and defect detection

The aim of this work is to detect the location of defect provided that the de-
fect (damage) exists in the considered plate structure. The conducted numerical
investigation is based on the signal analysis of the structural static and dynamic
response. The plate material is assumed as linear-elastic. The plate bending is
described and solved by the Boundary Element Method in the direct simplified
approach where there is no need to introduce either concentrated forces at the
plate corners or equivalent shear forces at the plate continuous edges. This ap-
proach is described for static, dynamic and stability analysis in [9, 10]. The static
fundamental solution (the Green function) for an infinite plate is used

(4.1) w∗(r) =
1

8πD
r2 ln(r),

which is the solution of the biharmonic equation:

(4.2) ∇4w∗(r) =
1

D
δ(r).

For a thin isotropic plate, where D = Eh3/(12(1− v2)) is the plate stiffness,
h is the plate thickness, E and v are the Young modulus and the Poisson’s ratio,
δ(r) is the Dirac delta and r =

√
x2 + y2.

4.1. Boundary and boundary-domain integral equations for static
and dynamic analysis. Derivation of the set of algebraic equations.

Calculation of deflection inside a plate domain

A plate supported on boundary and subjected to the external distributed
load q is analysed. The boundary integral equations for static analysis of plates
are derived using Bettie’s theorem and have the form

(4.3) c(x)w(x)+

ˆ

Γ

[
T ∗n(y,x)w(y)−M∗ns(y,x)

dw(y)

ds
−M∗n(y,x)ϕn(y)

]
dΓ (y)

=

ˆ

Γ

[
T̃n(y)w∗(y,x)−Mn(y)ϕ∗n(y,x)

]
dΓ (y)

+

ˆ

Ω

q(y)w∗(y,x) dΩ(y),



144 A. KNITTER-PIĄTKOWSKA, M. GUMINIAK

(4.4) c(x)ϕn(x)+

ˆ

Γ

[
T
∗
n(y,x)w(y)−M∗ns(y,x)

dw(y)

ds
−M∗n(y,x)ϕn(y)

]
dΓ(y)

=

ˆ

Γ

[
T̃n(y)w∗(y,x)−Mn(y)ϕ∗n(y,x)

]
dΓ(y)

+

ˆ

Ω

q(y)w∗(y,x) dΩ(y),

where w∗(r) = w∗(x,y) is the fundamental solution, x is the source point, y is the
field point and r = |y − x|. The coefficient c(x) is taken as: 1, when x is located
inside the plate domain; 0.5, when x is located on the smooth boundary and 0,
when x is located outside the plate domain.

The second boundary integral Eq. (4.4) can be obtained by replacing the unit
concentrated force P ∗ = 1 with the unit concentrated moment M∗n = 1. Such
a replacement is equivalent to the differentiation of the first boundary integral
Eq. (4.3) with respect to the coordinate n at a point x belonging to the plate
domain and letting this point approach the boundary and assuming n to coincide
with the normal to it. The force T̃n(y) can be treated as the equivalent shear
force Vn(y) on a fragment of the boundary which is located far from the corner
or it plays the role of the corner force Rn(y) which is distributed on a small
fragment of the boundary close to the corner. In the case of the free edge we must
combine the rotation angle in the tangent direction ϕs(y) with the fundamental
function M∗ns(y). Since the relation between ϕs(y) and the deflection is known:
ϕs(y) = dw(y)/ ds, the angle of rotation ϕs(y) can be evaluated while using
a finite difference scheme to the deflection with two or more adjacent nodal
values [9, 10]. In this analysis, the employed finite difference scheme includes the
deflections of three adjacent nodes [10].

The set of algebraic equations has the form:

(4.5)
[

GBB GBS

∆ −I

]{
B
ϕS

}
=

{
FB

0

}
,

where GBB and GBS are the matrices of the dimension (2N×2N) and (2N×S),
grouping boundary integrals depending on type of boundary respectively, ∆ is
the matrix grouping difference operators connecting angles of rotations in the
tangent direction with deflections of suitable boundary nodes if the plate has
a free edge, N is the number of boundary physical nodes (boundary element
of the constant type) and S is the number of boundary physical nodes (boun-
dary elements of the constant type) along the free edge, finally FB is the right-
hand-side loading vector. In the current numerical analysis, the constant type of
element will be used.
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The solution of the set of Eq. (4.5) allows to determine suitable boundary
variables. Now, using the boundary integral Eq. (4.3) directly and assuming the
value of the coefficient c(x) equal to one it is possible to calculate deflection
inside the plate domain, which can be expressed as the sum:

(4.6) w(x) = w (B, ϕS) + w(p).

For the dynamic analysis the boundary and domain integral equations are
derived using Betti’s theorem, too. Plates supported on boundary and rested
on internal column supports will be considered. Inside the plate domain there
are additional collocation points introduced which are associated with lumped
masses according to the Bèzine technique [17]. In each internal collocation point
vectors of displacement wi(t), acceleration ẅi(t) and inertial force Bi(t) depen-
dent on time t are established

(4.7)

wi(t) = Wi sinω t,

ẅi(t) = −ω2Wi sinω t,

Bi(t) = Bi sinω t,

where ω is the natural frequency, and amplitudes of inertial forces are de-
scribed as:
(4.8) Bi = ω2miWi.

The boundary-domain integral equations have the character of amplitude
equations [8, 9]:

(4.9) c(x)w(x)+

ˆ

Γ

[
T ∗n(y,x)w(y)−M∗ns(y,x)

dw(y)

ds
−M∗n(y,x)ϕn(y)

]
dΓ(y)

=

ˆ

Γ

[
T̃n(y)w∗(y,x)−Mn(y)ϕ∗n (y,x)

]
dΓ(y)

−
ˆ

Ωr

qrw
∗(r,x) dΩr +

I∑
i=1

Biw
∗(i,x),

(4.10) c(x)ϕn(x)+

ˆ

Γ

[
T
∗
n(y,x)w(y)−M∗ns(y,x)

dw(y)

ds
−M∗n(y,x)ϕn(y)

]
dΓ(y)

=

ˆ

Γ

[
T̃n(y)w∗(y,x)−Mn(y)ϕ∗n(y,x)

]
dΓ(y)

−
ˆ

Ωr

qrw
∗(r,x) dΩr +

I∑
i=1

Biw
∗(i,x).



146 A. KNITTER-PIĄTKOWSKA, M. GUMINIAK

After discretization of the plate boundary using constant type of elements,
the set of algebraic equations can be obtained in matrix notation [9, 10]

(4.11)


GBB GBS GBR −λGBwMp

∆ −I 0 0

GRB GRS GRR −λGRwMp

GwB GwS GwR −λGwwMp + I




B̃

ϕ̃s

R̃

w̃

 =


0

0

0

0

,
where GBR is the matrix of the dimension (2N ×R) grouping integrals of the
fundamental function w∗ over the column cross-section; GBw is the matrix of
the dimension (2N ×M) grouping values of fundamental function w∗ estab-
lished at the internal collocation points, where M is the number of the internal
collocation points and N is the number of the boundary nodes; GRB and GRS

are the matrices of the dimension (R× 2N) and (R× S) respectively, grouping
boundary integrals; GRR is the matrix of the dimension (R×R) grouping in-
tegrals of fundamental function w∗ over the column cross-section; GRw is the
matrix of the dimension (R×M) grouping values of fundamental function w∗

established at internal collocation points; GwB is the matrix of the dimension
(M × 2N) grouping the boundary integrals of the appropriate fundamental func-
tions (depending on type of boundary); GwS is the matrix of the dimension
(M × S) grouping the boundary integrals of the appropriate fundamental func-
tions; GwR is the matrix of the dimension (M ×R) grouping integrals of fun-
damental function w∗ over the column cross-section; Gww is the matrix of the
dimension (M ×M) grouping the values of fundamental function w∗ established
at internal collocation points, R is the number of internal column supports, fi-
nally Mp = diag (m1,m2,m3, ...,mM ) is the plate mass matrix, λ = ω2 and I is
the unit matrix (M is the number of lumped masses). The definition presented
above are explained in the Fig. 5 for static and 5b for dynamic analysis [10].

a) b)

Fig. 5. Vector (a) and matrix (b) designation occurring in Eqs (4.5) and (4.11).
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Elimination of boundary variables B and ϕS from the matrix Eq. (4.11) leads
to the standard eigenvalue problem

(4.12)
{

A− λ̃ I
}

w̃ = 0,

wherein λ̃ = 1/λ = 1/ω2,

(4.13) A =
(
CwBC−1

BBCBw −Cww

)
Mp

and

(4.14)

CBB = GBB + GBS∆−GBRG−1
RR (GRB + GRS∆),

CBw = GBRG−1
RRGRw −GBw,

CwB = GwB + GwS∆−GwRG−1
RR (GRB + GRS∆),

Cww = GwRG−1
RRGRw −Gww.

4.2. Modeling of defects in plate boundary and the response signal
of the structure

It is assumed, that defects exist near the plate boundary. In other words
defects can be modeled as additional plate edges forming a gap (Fig. 6). The
boundary conditions assumed for these edges are the same as for a free edge.

Fig. 6. A plate with damaged edge.

The solution of the set of Eq. (4.5) for static and calculation of deflection,
angle of rotation in any directions, bending moments and torsional moments or
transverse forces inside a plate domain allow to obtain the response signal of
the considered plate structure for DWT analysis. Similarly, the solution of the
standard eigenvalue problem described by the relation (4.12), gives eigenvalues
as natural vibration frequencies and eigenvectors as deflections at internal col-
location points. Furthermore, using the modal analysis it is possible to obtain
modes of forced vibration, which can be treated as the structural response for
DWT signal analysis.
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5. Numerical examples

The rectangular plates supported on boundary and resting on internal column
supports are considered. Defects are introduced by the additional edges forming
slots in the basic plate domain. The BEM is applied to solve a thin plate bending
problem. Each plate edge is divided into 30 boundary elements of the constant
type. For the supported edges, collocation points are located exactly on elements,
for free edges slightly outside the plate boundary as defined by the parameter
ε = δ/d, where δ is the real distance of a collocation point from a plate edge and d
is the element length. For each example ε = 0.001 is assumed. Diagonal boundary
terms in the characteristic matrix are calculated analytically and remaining ones
– using 12-point Gauss quadrature [10]. Plates are subjected to static or dynamic
loading. Decomposition of the obtained signal is carried out using DWT with
Daubechies 4, 6 8, Coiflet 4, 6 and B-spline 1 families of wavelets. For a selected
example the white noise was introduced, too.

5.1. Two-dimensional analysis of static response signal

The square plate supported on boundary and subjected to static uniformly
distributed load p = 5 kN/m2 is considered and presented in Fig. 7. The plate
properties are E = 30.0 GPa, v = 0.16 and the plate thickness is h = 0.1 m. In
the middle of one edge the slot has been introduced symmetrically and described
by the parameter e = 0.01 (Fig. 7). External loading p is applied on the left-hand
half of the plate domain.

Fig. 7. The square plate subjected to uniformly distributed loading p.

Two-dimensional DWT analysis in the field of x and y has been carried
out. The two-dimensional set of measurement points with regular localization
inside of the plate domain was prepared. The number of measurements in two
perpendicular directions is Nx = Ny = 64. The static vertical displacements were
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registered as the signal for decomposition. The results of calculation with the
use of Coiflet 4 wavelet are presented in Fig. 8 and B-spline 1 wavelet in Fig. 9.
In both cases the presence as well as the location of the crack were well exposed.
However, one must be aware of the existence of the boundary disturbances, not
necessarily connected with the existence of a defect in this particular place.

Fig. 8. 2-D DWT (Coiflet 4, detail 1) signal: vertical displacements,
Nx = Ny = 64 – number of measurements.

Fig. 9. 2-D DWT (B-spline 1, detail 1) signal: vertical displacements,
Nx = Ny = 64 – number of measurements.

5.2. One-dimensional analysis of dynamic response signal

Example 1. Rectangular plate resting on eight internal column supports is
considered and presented in Fig. 10. Two parameters d and e describe dimension
of a crack located near one plate edge. The crack dimensions are also presented
in Fig. 10. It is assumed, that plate deformations according to first four modes of
vibration are taken as the plate response signals. The number of measurements
is N = 64. The results of calculation for the first two modes registered along



150 A. KNITTER-PIĄTKOWSKA, M. GUMINIAK

Fig. 10. Rectangular plate resting on eight internal column supports.

the line with the distance y = 0.1 m from the longer edge are presented in
Fig. 11. In both cases the presence and the location of damage were properly
indicated by the high peaks of the transformed signal. Decomposition of the
similar signal, i.e. amplitude displacements for the first and second mode yet
measured along the line with the distance y = 0.3 m has also revealed the
existence and position of the crack (Figs 11, 12). Moreover, in the Fig. 12b one
can estimate the extent of the defect. Worth noting is the fact that the presence
of internal supports/columns does not disrupt the correct damage detection.

a) b)

Fig. 11. 1-D DWT (Daubechies 6, detail 1) signal: vertical displacements according to the first
(a) and the second (b) modes of vibration, y = 0.1 m, N = 64 – number of measurements.

a) b)

Fig. 12. 1-D DWT (Daubechies 4, detail 1) signal: vertical displacements according to the first
(a) and the second (b) modes of vibration, y = 0.3 m, N = 64 – number of measurements.
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Example 2. Rectangular plate resting on two opposite edges and four col-
umn supports is considered and presented in Fig. 13. The analyses have been
performed for the data set in the form of amplitudes of vertical displacements
for the third and fourth mode measured in 64 points along the line with the
distance y = 0.1 m and y = 0.3 m, respectively. The results of signal decompo-
sition, presented in Figs 14 and 15, revealed the existence and location of the
crack. Noteworthy is the fact that amended terms of support when compared to
Example 1 caused smaller boundary disturbances in the transformation window.

Fig. 13. Rectangular plate resting on two opposite edges and four column supports.

a) b)

Fig. 14. 1-D DWT (Daubechies 4, detail 1) signal: vertical displacements according to the
third (a) and fourth (b) modes of vibration, y = 0.1 m, N = 64 – number of measurements.

a) b)

Fig. 15. 1-D DWT (Daubechies 4, detail 1) signal: vertical displacements according to the third
(a) and the fourth (b) modes of vibration, y = 0.3 m, N = 64 – number of measurements.
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Example 3. Rectangular plate supported at all four corners and resting on
four column supports is considered and presented in Fig. 16. DWT has been
conducted for the signal of vertical displacement amplitudes for the second and
third mode, measured in 64 points along the line with the distance y = 0.1 m
and y = 0.3 m. In Figs 17 and 18 the presence and the position of the defect
can be noted by the means of evident high peaks. In the case of the structural
response signal registered along the line with the distance y = 0.3 m the width

Fig. 16. Rectangular plate supported in four corners and resting on four column supports.

a) b)

Fig. 17. 1-D DWT (Daubechies 4, detail 1) signal: vertical displacements according to the
second (a) and the third (b) modes of vibration, y = 0.1 m, N = 64 – number of measurements.

a) b)

Fig. 18. 1-D DWT (Daubechies 4, detail 1) signal: vertical displacements according to the
second (a) and the third (b) modes of vibration, y = 0.3 m, N = 64 – number of measurements.
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of disturbances area is greater (Fig. 18) when compared to the results for the
distance y = 0.1 m (Fig. 17) and corresponds to the length of the crack.

Example 4. Plate presented in Fig. 16 is considered. The analysis has been
performed for the vertical displacements according to the third mode of vibra-
tion, the measurement line distance y = 0.1 m. The randomly generated white
noise was introduced with the maximum intensity 30% of the response signal
measured value (relative to the highest measured value). For the signal decom-
position Daubechies 4 and 8 families of wavelets were applied. Despite previous
experience [12] which revealed that the damage is in fact unidentifiable for the
noise level higher than 5% in this case the crack presence was revealed for the
20 % noise level. DWT, details 1 are presented in Figs. 19bc. The obtained re-
sults give hope for the application of the method in detecting defects during real
experiments for contaminated data.

a) b)

c) d)

Fig. 19. 1-D DWT (detail 1) signal: vertical displacements according to the third mode of
vibration, Daubechies 8, noise 30%: a) Daubechies 4, noise 20%, b) Daubechies 8, noise 20%,

c) Daubechies 4, noise 10%, d) y = 0.1 m, N = 64 – number of measurements.

5.3. Two-dimensional analysis of dynamic response signal

Rectangular plate simply-supported on two opposite edges is considered and
presented in Fig. 20. The plate properties are E = 30.0 GPa, v = 0.16 and
the plate thickness is h = 0.1 m. In the middle of one edge the slot has been
introduced symmetrically and described by the parameter e = 0.008 m. The
analysis has been performed for the vertical displacements according to the first,



154 A. KNITTER-PIĄTKOWSKA, M. GUMINIAK

Fig. 20. Rectangular plate simply-supported on two opposite edges.

third and fourth mode of vibration, measured in two-dimensional domain of
64× 64 points, which form the regular grid. The results of calculation with the
use of B-spline 1, Coiflet 6 and Daubechies 6 wavelet are presented in Figs 21,
22, and 23, respectively. In all the cases the presence and the location of the
crack were well exposed.

Fig. 21. 2-D DWT (B-spline 1, detail 1) signal: vertical displacements, mode 1,
Nx = Ny = 64 – number of measurements.

Fig. 22. 2-D DWT (Coiflet 6, detail 1) signal: vertical displacements, mode 3,
Nx = Ny = 64 – number of measurements.
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Fig. 23. 2-D DWT (Daubechies 6, detail 1) signal: vertical displacements, mode 4,
Nx = Ny = 64 – number of measurements.

6. Concluding remarks

Application of discrete 1-D and 2-D wavelet transformation (DWT) to recog-
nition of structural response signal discontinuity in the analysis of plates is dis-
cussed in the paper. Considered plates are supported on boundary or by inter-
nal columns. The thin (Kirchhoff) plate bending is described by the boundary-
domain integral equations and solved while using the Boundary Element Method
(BEM). Numerical analysis of the structure by the BEM, by which the signal of
structural response is obtained replaces experimental data. All defects are intro-
duced by additional edges forming slots or holes in the relation to the basic plate
domain. Measured response signal was assumed as the static deflection surface
for 2-D and modes of vibrations for 1-D discrete wavelet transform, respectively.
To make the values of the structure response signal more realistic, the white
noise disturbing signal was additionally introduced and considered in selected
examples. Damage was properly localized while using asymmetric Daubechies 4,
6, 8 set of wavelets as well as nearly symmetrical Coiflet 6 and B-spline 1 set
of wavelets in signal decomposition. The position of defects was quite correctly
identified by the high peak of the transformed data. The detection of defects lo-
calized inside the plate domain was not considered in this paper. The minimum
number of measurements was assumed as sixty four.
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