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The paper deals with the numerical homogenization of structures made of non-linear porous
material. The material non-linearity causes a significant increase in computational costs for
numerical homogenization procedure. The application of the response surface methodology
allows for a significant reduction of the computational effort providing good approximation
precision. Finite element method commercial software is employed to solve a boundary-value
problem in both scales. Due to the significant reduction in computing time, the proposed
approach may be applied for different optimization and identification tasks for inhomogeneous,
non-linear media, especially with the use of global optimization methods.
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1. Formulation of the problem

Porous materials are an important group of inhomogeneous structural materi-
als. Their macro properties depend on such microscale parameters as the porosity
and shape and the location of voids at micro scale [1]. A large popular group of
porous media are porous metallic materials, like porous Al, Ti, Mg and others.
They are characterized by outstanding mechanical, electrical, thermal and acous-
tic properties while maintaining a low density [2]. Porous materials are applied
as structural elements, e.g. in grinding wheels, metal self-lubricating bearings,
gas-permeable moulds, surgical implants and impact energy absorbers [3].

The behaviour of inhomogeneous material can be described by differential
equations with discontinuous coefficients, like elastic constants for linear-elastic
materials. To obtain the macroscopically homogenous, equivalent effective con-
tinuous coefficients of differential equations, numerical homogenization is per-
formed [4].
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Many inhomogeneous materials, like composites or porous materials, exhibit
physically non-lineal behaviour. The aim of the paper is to develop an efficient
approximate numerical homogenization procedure for inhomogeneous structures.
As it is assumed that the material is non-linear, the incremental procedure is
involved, which dramatically increases the computational effort. The main idea
is to replace the full non-linear homogenization procedure for isotropic materials
by initial analyses of the representative volume elements and to determine the
relationship between stresses and strains in the form of a response surface. The
proposed approach significantly reduces the computational cost of the homoge-
nization procedure with an acceptable decrease in its accuracy.

Presented methodology may be especially useful in different multi-scale opti-
mization and identification problems for non-linear materials. As such problems
are often multimodal, global optimization algorithms should be applied. Global
and usually populational optimization methods, process a set of potential so-
lutions in one iteration and they are time and memory demanding (compar-
ing, e.g. with gradient-based optimization methods) [5]. Authors’ applications
of bio-inspired global optimization methods for multiscale optimization and the
identification of structures made of linear materials are presented, e.g. in [6, 7]
and [8].

ANSYS DesignXplorer software is employed to construct and verify response
surfaces [9]. Finite element method software is applied to solve the boundary-
value problem in both considered scales [10].

2. Numerical homogenization

Different inhomogeneous materials in form of composites and porous mate-
rials are widely applied in modern industry. To predict the behaviour of such
materials considering more than one scale it is necessary to create a proper
model. Direct multiscale modelling of the whole inhomogeneous structures leads
to an enormous number of equations to solve. Homogenization methods make
it possible to obtain a medium macroscopically equivalent to an inhomogeneous
medium in a micro scale [11]. The effective properties od homogenized material
may be obtained using analytical, empirical or computational methods. Diverse
procedures applied for the homogenization of porous linear and non-linear media
are described, e.g. in [12] and [13].

A typical approach to different homogenization methods relies on the ide-
alisation of microstructural heterogeneities and the simplification of the spatial
distribution of inclusions. The problem consists in the determination of a repre-
sentative volume element (RVE) on which averaging is performed, on the selec-
tion of boundary conditions and on the construction of numerical models of its
heterogeneity, assuming local periodicity [14].
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Numerical homogenization methods, also known as local-global analysis, al-
low for the determination of the stress-strain relation at any point of the structure
through precise modelling of microstructure at this point. Numerical (computa-
tional) homogenization methods involve the examination of finite-sized volume
elements containing a detailed distribution of material inhomogeneities.

The most common approach to the numerical homogenization is the deter-
mination of a constitutive relation between averaged field variables, like stresses
or strains [15]. Different numerical methods may be used to perform the numer-
ical homogenization, e.g. the finite element method (FEM) [16] or the boundary
element method (BEM) [17]. In the present paper, FEM software is employed to
perform numerical homogenization.

2.1. Numerical homogenization of linear materials

It is assumed that the RVE fully represents the behaviour of the whole ma-
terial or its part [18]. In this case the following conditions must be satisfied for
RVE of the volume V :

a) the RVE characteristic dimension is relatively small comparing to the
macroscale dimensions and relatively large comparing to the micro-scale
dimensions (separation of scales),

b) the equality of the average energy density at a micro scale and the macro-
scopic energy density at the macrostructure point corresponding to the
RVE (the Hill-Mandel condition):

(2.1) 〈σijεij〉 = 〈σij〉 〈εij〉 ,

where σij – micro stress tensor, εij – micro strain tensor, 〈·〉 – the averaged
value of the considered field:

(2.2) 〈·〉 =
1

|V |

ˆ

V

(·) dV,

c) boundary conditions satisfying Hill-Mandel condition, usually in one of the
forms:
– uniform traction (the Reuss assumption):

(2.3) tj |∂V = σijni ⇒ 〈σij〉 = σij ,

– uniform displacements:

(2.4) uj |∂V = εijxi ⇒ 〈εij〉 = εij ,



216 W. BELUCH, M. HATŁAS

– periodic boundary conditions:

(2.5) u+
j − u

−
j = 〈εij〉 ·

(
x+
i − x

−
i

)
, t+i = −t−i , ∀x ∈ ∂V : n+

i = −n−i ,

where uj – displacements, ti – tractions, xi – coordinates of points on RVE
boundary ∂V , ni – components of the vector normal to the boundary ∂V .

If FEM is used to solve the boundary-value problem in both scales, RVEs
are associated with each integration point on the macro scale. In addition to
periodic boundary conditions, deformation boundary conditions from a higher
scale (localization) are imposed on each RVE. As a result, average stresses (ho-
mogenization) are obtained for RVE, which are transferred to a higher scale and
are used to determine homogenized values of material parameters on a macro
scale.

Assuming the zero-displacement field within the pores, averaged strain and
stress tensors for porous material may be calculated as [19]:

(2.6) 〈εij〉 =
1

|V |

ˆ

Vm

(εij) dV +
〈
εcij
〉
, 〈σij〉 =

1

|V |

ˆ

Vm

(σij) dV,

where εcij – the cavity strain due to the deformation of the boundary of the pores,
Vm – the RVE matrix volume.

The constitutive equation for linear-elastic homogenized material can be ex-
pressed as:

(2.7) 〈σij〉 = Qijkl 〈εij〉 ,

where Qijkl – stiffness tensor, i, j, k, l = 1, 2, 3.

2.2. Numerical homogenization of non-linear materials

For linear analyses, the one-way information transfer (from micro to macro
scale) of averaged field values is sufficient. Otherwise, a two-way information
transfer is necessary. In contrast to linearly-elastic models, non-linear materials’
homogenization tasks are much more time and memory requiring, due to the
necessity of solving a large number of local models and keeping information of
stress/strains distributions for all RVEs. Solution of non-linear problems is re-
lated to the iterative approach, like Newton-Raphson or arc-length methods [20].

During the task solving, the values of external loads and internal forces result-
ing from non-linear material behaviour are analysed until specific convergence
conditions are obtained. Due to local changes in the material structure caused,
for example, by plasticity, a local RVE is introduced for each material point (the
integration point in the macroscopic model) [21, 22]. At each iteration of the
macroscopic task, the values associated with the strain tensor are transferred to
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the local RVE and the non-linear simulation is performed to determine the state
of stress. The task is considered solved when the convergence of forces is met for
the macroscopic model and each local RVE model.

3. Response surfaces methodology

To reduce the computational cost, the response surfaces methodology (RSM)
strategy is proposed. Response surfaces, also known as metamodels, surrogates,
emulators or auxiliary models are simplified models of an actual models. They
approximate the input-output function that is implied by the underlying simu-
lation model [23]. RSM is a collection of mathematical and statistical techniques
useful for problems in which a few independent input variables influence the
response of interest (performance measure). Such techniques are helpful in de-
veloping, improving and optimizing processes [24].

As in the most RSM problems the real response function is not known, it
is necessary to develop a proper approximation of the response function and
control some parameters describing its quality [25].

The RSM is often applied to reduce the computational effort as it provides
almost instantaneous output parameters by approximate evaluation. A high ac-
curacy of the response function may be obtained for several design points only. To
control the quality of the response surface, different metrices are introduced. In
the typical approach, the calculation of the response function (functions) starts
from a small number of points and the correctness of the obtained approxima-
tion is verified for selected verification points. If its quality is unsatisfactory, the
refinement points are introduced to modify the response surface.

There are several approaches to create response surfaces, e.g. 1st and 2nd
order polynomials, Kriging, non-parametric regression, genetic aggregation or
artificial neural networks. In the present paper the non-parametric regression
(NPR) is employed to create a response surface. Such method is especially con-
venient for nonlinear responses with noisy results [9]. In NPR method, the mar-
gin tolerance ε creates an envelope around the actual output surface and all (or
most) of the sample points.

NPR belongs to a class of Support Vector Method (SVM) type techniques in
which hyperplanes are used to separate data groups [26]. The response surface
is approximated as:

(3.1) f(X) = 〈W, X〉+ b =

N∑
i=1

(Ai −A∗i ) ·K (Xi,X) + b,

where W – a weighting vector, X – an input sample, b – a bias, A – Lagrange
multipliers, K – radial basis functions, N – the number of sample points.
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The Lagrange multipliers are the unknown parameters and a pair Ai and A∗i
is defined by tolerance values ε+ and ε− respectively for each input variable. The
Lagrange multipliers are calculated by minimization of the weight function.

4. Response surfaces in numerical homogenization
of non-linear materials

In the proposed methodology, the response surfaces are generated on the
basis of the selected input parameters for a relatively small number of training
data.

At the beginning, the limits for the input parameters (such as porosity and
stress tensor components’ values) are set and the initial number of training
data necessary to prepare the response surface is taken. For each training point,
a proper RVE is created and appropriate boundary conditions are applied. In
the first homogenization step, linear simulation is performed, and reaction forces
values are calculated. On the basis of the reaction values, equivalent Young’s
modulus and Poisson’s ratios are calculated.

In the second homogenization step, non-linear, incremental analysis is per-
formed for given RVEs. The results in the form of tractions allow for the compu-
tation of average stress values as the function of input parameters. The response
surface generated based on the obtained results describes the dependence of
stresses on porosity and strain tensor values.

The quality of the response surface is controlled by means of 4 selected met-
rices: coefficients of determination (R2 measure), adjusted coefficient of determi-
nation, maximum relative residual and root mean square error [13]. If the quality
of the answer surface is not high enough, the number of training data increases
and the whole procedure is repeated for additional training points.

As the values connected to stress distribution obtained for macroscopic model
simulation are the averaged ones, additional steps are required to calculate the
real values of stresses. To calculate the local stress distribution, it is necessary
to perform the sub-model analysis for the RVE located in selected point(s).

The block diagram of the proposed methodology is presented in Fig. 1.
The received response surface can be used as a set of material input informa-

tion for macroscopic simulation of heterogeneous materials, also considering the
non-uniform distribution of microstructure parameters (e.g. gradient materials).

The simulation based on the response surface makes it possible to obtain
displacement results and an approximate average stress state without performing
local RVE analysis for each integration point of the structure. The proposed
methodology also allows for fast and fairly accurate determination of critical
places in the structure as well as a calculation of the permissible load.
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Fig. 1. Block diagram of numerical homogenization with the use of response surfaces.

5. Numerical example

A porous material in the form of Ti-6Al-4V alloy with the porosity in the
range p = 0.01–0.8 is considered. It is assumed that the material is nonlinear,
and it is defined as a bilinear elastoplastic one. The material parameters for non-
porous Ti-6Al-4V alloy are: Young’s modulus E = 113.8 GPa, Poisson’s ratio
v = 0.3, yield point Re = 1.09 GPa, strain hardening modulus ET = 0.85 GPa,
density ρ = 4430 kg/m3.

It is assumed that RVEs contain 64 uniformly distributed spherical voids of
different diameters for each considered porosity level. Exemplary FEM meshes
for limit porosity values are presented in Fig. 2.

a) b)

Fig. 2. RVE FEM mesh for porosity: a) p = 0.01 (96 170 Tet10 elements),
b) p = 0.8 (158 847 Tet10 elements).
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To obtain the response surface, linear and non-linear analyses are necessary.
Two input parameters are introduced to the model: porosity p and the normal
strain component ε. For each porosity level a linear simulation with displacement
boundary conditions is performed – as a result, the reactions at the boundaries
are calculated. In the next step, equivalent E and v values are calculated by
means of the numerical homogenization procedure.

The non-linear tension is performed on the RVE which result in the averaged
stress values for given p and ε. The procedure is repeated according to assumed
experiment plan (here: 8 times). The obtained response surface is presented in
Fig. 3.

Fig. 3. Response surface for porous Ti-6Al-4V alloy.

The obtained response surface was used to perform the numerical homoge-
nization of a real structure. A porous supported beam of dimensions b× h× l =
20× 30× 100 mm supported and loaded as presented in Fig. 4a is considered. It
is assumed that the porosity p = 0.2. FEM mesh consists of 1250 20-node Hex20
hexahedral elements.
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In the first step, the linear analysis was performed. As a result, the dis-
placement values for the beam are calculated by means of the response surface
strategy (Fig. 4b).
a) b)

Fig. 4. a) The cantilever beam: loading and support and b) the FEM mesh and displacement
map for linear material model.

An exemplary location of the RVE for the calculation of the local stress
distribution is presented in Fig. 5. The displacement boundary conditions are
transferred to microscopic model from the macroscopic one to perform the ho-
mogenization procedure.

Fig. 5. The cantilever beam: an exemplary RVE location for local stress calculation.

The results in the form of the colour maps of total deformations and equiv-
alent von Mises stresses are presented in Fig 6.

In the second step, the non-linear analysis of the beam was performed. The
displacement of the whole structure and for the RVE located in the selected
point are presented in Fig. 7.

The von Mises stress and plastic strain distributions for selected RVE are
presented in Fig. 8.

To verify the procedure, the macroscopic model with 12 960 pores for non-
linear analysis was considered. Three different discretization variants were con-
sidered.

A hardware configuration for homogenized, local RVE and global models are
collected in Table 1.

It can be observed in Table 2 that the displacement value obtained for the ho-
mogenized model is similar to values obtained for non-homogenized macroscopic
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a) b)

Fig. 6. RVE in selected location (linear material model):
a) total deformations, b) von Mises stresses.

a) b)

Fig. 7. Nonlinear material model – displacement maps for:
a) the whole beam, b) the RVE in selected location.

models. Moreover, if the discretization in the non-homogenized model is better
(a higher number of elements or a better geometry approximation with hexa-
hedral elements), the displacement values are getting closer to the homogenized
model.
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a) b)

Fig. 8. Nonlinear material model, RVE results: a) von Mises stresses, b) plastic strains.

Table 1. Hardware configuration for different models.

Task Homogenized and RVE models
– desktop PC

Global models
– HPC Workstation

No. of cores 4 8
Processor Intel Core i7-4710MQ 2.5 GHz Intel Xeon E5-2640 v3 2.6 GHz
RAM [GB] 16 GB 128 GB

Operating system Windows 10 Windows 7

Table 2. Comparison of the computational effort for homogenized model, local RVE
and global model.

Surface resp.
strategy

Local
RVE

Global
model 1

Global
model 2

Global
model 3

No. of nodes 6 696 437 505 5 729 086 14 320 207 21 804 020
No. of elements 1 250 98 304 3 889 568 9 901 175 4 860 000
Element type Hex20 Hex20 Tet10 Tet10 Hex20

Max displacement [mm] 1.1226 1.1173 1.062 1.0792 1.09574

Max von Mises stress [MPa]
677.15

(averaged)
1151.8 1216 1226.4 1340.19

Max plastic strain [–] 6.19E-04
(averaged)

7.04E-03 4.60E-03 8.61E-03 1.46E-02

RAM usage [MB] 154 2 347 43 519 95 600 153 100
Analysis time [s] 7 127 1 888 9 409 25 428
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The comparison of the results for nonlinear material model for: homogenized,
local RVE and global models are collected in Table 2.

The maximum equivalent stress from RVE calculated by the homogenized
model is smaller but the stress distribution is much more continuous than in
non-homogenized ones, so the maximum values may be calculated incorrectly
due to too coarse meshes. The application of fine mesh to such a model turned
out to be too computationally expensive (RAM usage and acceptable analysis
time).

The plastic strain values may be treated as calculated with the acceptable
precision considering the overall time efficiency of the proposed approach.

6. Final conclusions

In the present paper an efficient way of the reduction of the computational
effort in case of the numerical homogenization of the non-linear material has
been proposed. Surface response methodology strategy allows for a significant
reduction of computations necessary to obtain homogenized values of the state
field in multiscale analysis of non-linear heterogeneous materials. The obtained
results accuracy is satisfactory and analysis time has been considerably reduced.
The type of the response surface has to be tailored to the problem. The quality
of the response surface must be precisely controlled using suitable metrics to
describe the mapped function properly. The presented numerical example shows
the effectiveness of the proposed procedure.

Further research has to be performed to determine method effectiveness and
accuracy for objects under multiaxial stress and non-linear strain state.

The presented methodology may be applied to multiscale problems for dif-
ferent inhomogeneous media with material nonlinearities, e.g. composites. Such
approach is planned to be applied for different optimization and identification
problems with non-linear and inhomogeneous materials.
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